BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 23288712)

  • 1. Materials for the active layer of organic photovoltaics: ternary solar cell approach.
    Chen YC; Hsu CY; Lin RY; Ho KC; Lin JT
    ChemSusChem; 2013 Jan; 6(1):20-35. PubMed ID: 23288712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifications in morphology resulting from nanoimprinting bulk heterojunction blends for light trapping organic solar cell designs.
    Tumbleston JR; Gadisa A; Liu Y; Collins BA; Samulski ET; Lopez R; Ade H
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8225-30. PubMed ID: 23910827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells.
    Price SC; Stuart AC; Yang L; Zhou H; You W
    J Am Chem Soc; 2011 Mar; 133(12):4625-31. PubMed ID: 21375339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-processed bulk-heterojunction solar cells containing self-organized disk-shaped donors.
    Takemoto K; Karasawa M; Kimura M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6289-94. PubMed ID: 23072297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics.
    Treat ND; Chabinyc ML
    Annu Rev Phys Chem; 2014; 65():59-81. PubMed ID: 24689796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry.
    Bang JH; Kamat PV
    ACS Nano; 2011 Dec; 5(12):9421-7. PubMed ID: 22107780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-fullerene miscibility: a metric for screening new materials for high-performance organic solar cells.
    Treat ND; Varotto A; Takacs CJ; Batara N; Al-Hashimi M; Heeney MJ; Heeger AJ; Wudl F; Hawker CJ; Chabinyc ML
    J Am Chem Soc; 2012 Sep; 134(38):15869-79. PubMed ID: 22974056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials.
    Nadarajah A; Smith T; Könenkamp R
    Nanotechnology; 2012 Dec; 23(48):485403. PubMed ID: 23129022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of low sensitizing efficiency of quantum dots in organic solar cells.
    ten Cate S; Schins JM; Siebbeles LD
    ACS Nano; 2012 Oct; 6(10):8983-8. PubMed ID: 22950740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics.
    Li H; Earmme T; Ren G; Saeki A; Yoshikawa S; Murari NM; Subramaniyan S; Crane MJ; Seki S; Jenekhe SA
    J Am Chem Soc; 2014 Oct; 136(41):14589-97. PubMed ID: 25265412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the performance of polymer photovoltaic cells by using an alcohol soluble fullerene derivative as the interfacial layer.
    Mei Q; Li C; Gong X; Lu H; Jin E; Du C; Lu Z; Jiang L; Meng X; Wang C; Bo Z
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8076-80. PubMed ID: 23879557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells.
    Salvador M; MacLeod BA; Hess A; Kulkarni AP; Munechika K; Chen JI; Ginger DS
    ACS Nano; 2012 Nov; 6(11):10024-32. PubMed ID: 23062171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorene-based co-polymer with high hole mobility and device performance in bulk heterojunction organic solar cells.
    Watters DC; Yi H; Pearson AJ; Kingsley J; Iraqi A; Lidzey D
    Macromol Rapid Commun; 2013 Jul; 34(14):1157-62. PubMed ID: 23737100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.
    Tsang SW; Chen S; So F
    Adv Mater; 2013 May; 25(17):2434-9. PubMed ID: 23418056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function.
    Pal SK; Kesti T; Maiti M; Zhang F; Inganäs O; Hellström S; Andersson MR; Oswald F; Langa F; Osterman T; Pascher T; Yartsev A; Sundström V
    J Am Chem Soc; 2010 Sep; 132(35):12440-51. PubMed ID: 20704271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient absorption spectroscopy studies on polythiophene-fullerene bulk heterojunction organic blend films sensitized with a low-bandgap polymer.
    Löslein H; Ameri T; Matt GJ; Koppe M; Egelhaaf HJ; Troeger A; Sgobba V; Guldi DM; Brabec CJ
    Macromol Rapid Commun; 2013 Jul; 34(13):1090-7. PubMed ID: 23821335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.