These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 23288838)
1. Functional defects in the external and internal thin gates of the γ-aminobutyric acid (GABA) transporter GAT-1 can compensate each other. Ben-Yona A; Kanner BI J Biol Chem; 2013 Feb; 288(7):4549-56. PubMed ID: 23288838 [TBL] [Abstract][Full Text] [Related]
2. An acidic amino acid transmembrane helix 10 residue conserved in the neurotransmitter:sodium:symporters is essential for the formation of the extracellular gate of the γ-aminobutyric acid (GABA) transporter GAT-1. Ben-Yona A; Kanner BI J Biol Chem; 2012 Mar; 287(10):7159-68. PubMed ID: 22235131 [TBL] [Abstract][Full Text] [Related]
3. The aromatic and charge pairs of the thin extracellular gate of the γ-aminobutyric acid transporter GAT-1 are differently impacted by mutation. Dayan O; Ben-Yona A; Kanner BI J Biol Chem; 2014 Oct; 289(41):28172-8. PubMed ID: 25143384 [TBL] [Abstract][Full Text] [Related]
4. A glutamine residue conserved in the neurotransmitter:sodium:symporters is essential for the interaction of chloride with the GABA transporter GAT-1. Ben-Yona A; Bendahan A; Kanner BI J Biol Chem; 2011 Jan; 286(4):2826-33. PubMed ID: 21098479 [TBL] [Abstract][Full Text] [Related]
5. Conformationally sensitive proximity of extracellular loops 2 and 4 of the γ-aminobutyric acid (GABA) transporter GAT-1 inferred from paired cysteine mutagenesis. Hilwi M; Dayan O; Kanner BI J Biol Chem; 2014 Dec; 289(49):34258-66. PubMed ID: 25339171 [TBL] [Abstract][Full Text] [Related]
6. The interaction of the gamma-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV. Zomot E; Kanner BI J Biol Chem; 2003 Oct; 278(44):42950-8. PubMed ID: 12925537 [TBL] [Abstract][Full Text] [Related]
7. Internal gate mutants of the GABA transporter GAT1 are capable of substrate exchange. Dayan-Alon O; Kanner BI Neuropharmacology; 2019 Dec; 161():107534. PubMed ID: 30790582 [TBL] [Abstract][Full Text] [Related]
8. Identification of a lithium interaction site in the gamma-aminobutyric acid (GABA) transporter GAT-1. Zhou Y; Zomot E; Kanner BI J Biol Chem; 2006 Aug; 281(31):22092-22099. PubMed ID: 16757479 [TBL] [Abstract][Full Text] [Related]
9. An Extra Amino Acid Residue in Transmembrane Domain 10 of the γ-Aminobutyric Acid (GABA) Transporter GAT-1 Is Required for Efficient Ion-coupled Transport. Dayan O; Nagarajan A; Shah R; Ben-Yona A; Forrest LR; Kanner BI J Biol Chem; 2017 Mar; 292(13):5418-5428. PubMed ID: 28213519 [TBL] [Abstract][Full Text] [Related]
10. Transporter-associated currents in the gamma-aminobutyric acid transporter GAT-1 are conditionally impaired by mutations of a conserved glycine residue. Zhou Y; Kanner BI J Biol Chem; 2005 May; 280(21):20316-24. PubMed ID: 15784623 [TBL] [Abstract][Full Text] [Related]
11. Transmembrane domain I of the gamma-aminobutyric acid transporter GAT-1 plays a crucial role in the transition between cation leak and transport modes. Kanner BI J Biol Chem; 2003 Feb; 278(6):3705-12. PubMed ID: 12446715 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Zomot E; Bendahan A; Quick M; Zhao Y; Javitch JA; Kanner BI Nature; 2007 Oct; 449(7163):726-30. PubMed ID: 17704762 [TBL] [Abstract][Full Text] [Related]
13. Transmembrane domains I and II of the gamma-aminobutyric acid transporter GAT-4 contain molecular determinants of substrate specificity. Melamed N; Kanner BI Mol Pharmacol; 2004 Jun; 65(6):1452-61. PubMed ID: 15155838 [TBL] [Abstract][Full Text] [Related]
14. Transmembrane domain 8 of the {gamma}-aminobutyric acid transporter GAT-1 lines a cytoplasmic accessibility pathway into its binding pocket. Ben-Yona A; Kanner BI J Biol Chem; 2009 Apr; 284(15):9727-32. PubMed ID: 19201752 [TBL] [Abstract][Full Text] [Related]
15. Functional characterization of the GABA transporter GAT-1 from the deep-sea mussel Bathymodiolus septemdierum. Kinjo A; Sassa M; Koito T; Suzuki M; Inoue K Comp Biochem Physiol A Mol Integr Physiol; 2019 Jan; 227():1-7. PubMed ID: 30195015 [TBL] [Abstract][Full Text] [Related]
16. Residues in the extracellular loop 4 are critical for maintaining the conformational equilibrium of the gamma-aminobutyric acid transporter-1. MacAulay N; Meinild AK; Zeuthen T; Gether U J Biol Chem; 2003 Aug; 278(31):28771-7. PubMed ID: 12764157 [TBL] [Abstract][Full Text] [Related]
17. Cloning, immunolocalization, and functional expression of a GABA transporter from the retina of the skate. Birnbaum AD; Rohde SK; Qian H; Al-Ubaidi MR; Caldwell JH; Malchow RP Vis Neurosci; 2005; 22(2):211-23. PubMed ID: 15935113 [TBL] [Abstract][Full Text] [Related]
18. The substrates of the gamma-aminobutyric acid transporter GAT-1 induce structural rearrangements around the interface of transmembrane domains 1 and 6. Rosenberg A; Kanner BI J Biol Chem; 2008 May; 283(21):14376-83. PubMed ID: 18381286 [TBL] [Abstract][Full Text] [Related]
19. Tyrosine 140 of the gamma-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. Bismuth Y; Kavanaugh MP; Kanner BI J Biol Chem; 1997 Jun; 272(26):16096-102. PubMed ID: 9195904 [TBL] [Abstract][Full Text] [Related]
20. Glutamate-101 is critical for the function of the sodium and chloride-coupled GABA transporter GAT-1. Keshet GI; Bendahan A; Su H; Mager S; Lester HA; Kanner BI FEBS Lett; 1995 Aug; 371(1):39-42. PubMed ID: 7664880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]