These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23288883)

  • 1. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering.
    Pang Y; Abeysinghe IS; He J; He X; Huhman D; Mewan KM; Sumner LW; Yun J; Dixon RA
    Plant Physiol; 2013 Mar; 161(3):1103-16. PubMed ID: 23288883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula.
    Pang Y; Peel GJ; Wright E; Wang Z; Dixon RA
    Plant Physiol; 2007 Nov; 145(3):601-15. PubMed ID: 17885080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants.
    Li H; Tian J; Yao YY; Zhang J; Song TT; Li KT; Yao YC
    Plant Physiol Biochem; 2019 Jun; 139():141-151. PubMed ID: 30889479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.
    Li P; Chen B; Zhang G; Chen L; Dong Q; Wen J; Mysore KS; Zhao J
    New Phytol; 2016 May; 210(3):905-21. PubMed ID: 26725247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VvLAR1 and VvLAR2 Are Bifunctional Enzymes for Proanthocyanidin Biosynthesis in Grapevine.
    Yu K; Jun JH; Duan C; Dixon RA
    Plant Physiol; 2019 Jul; 180(3):1362-1374. PubMed ID: 31092697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins.
    Wang P; Liu Y; Zhang L; Wang W; Hou H; Zhao Y; Jiang X; Yu J; Tan H; Wang Y; Xie DY; Gao L; Xia T
    Plant J; 2020 Jan; 101(1):18-36. PubMed ID: 31454118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume.
    Li P; Dong Q; Ge S; He X; Verdier J; Li D; Zhao J
    Plant Biotechnol J; 2016 Jul; 14(7):1604-18. PubMed ID: 26806316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.
    Wang L; Jiang Y; Yuan L; Lu W; Yang L; Karim A; Luo K
    PLoS One; 2013; 8(5):e64664. PubMed ID: 23741362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis.
    Pang Y; Cheng X; Huhman DV; Ma J; Peel GJ; Yonekura-Sakakibara K; Saito K; Shen G; Sumner LW; Tang Y; Wen J; Yun J; Dixon RA
    Planta; 2013 Jul; 238(1):139-54. PubMed ID: 23592226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus.
    Paolocci F; Robbins MP; Madeo L; Arcioni S; Martens S; Damiani F
    Plant Physiol; 2007 Jan; 143(1):504-16. PubMed ID: 17098849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Analysis of Metabolic Fluxes from Leucoanthocyanins to Anthocyanins and Proanthocyanidins (PAs).
    Wang P; Zhang L; Zhao L; Zhang X; Zhang H; Han Y; Jiang X; Liu Y; Gao L; Xia T
    J Agric Food Chem; 2020 Dec; 68(51):15142-15153. PubMed ID: 33307696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis.
    Jiang X; Huang K; Zheng G; Hou H; Wang P; Jiang H; Zhao X; Li M; Zhang S; Liu Y; Gao L; Zhao L; Xia T
    Plant Sci; 2018 May; 270():209-220. PubMed ID: 29576074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis.
    Wang P; Zhang L; Jiang X; Dai X; Xu L; Li T; Xing D; Li Y; Li M; Gao L; Xia T
    Planta; 2018 Jan; 247(1):139-154. PubMed ID: 28887677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.
    Liu Y; Shi Z; Maximova S; Payne MJ; Guiltinan MJ
    BMC Plant Biol; 2013 Dec; 13():202. PubMed ID: 24308601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica.
    Hammerbacher A; Paetz C; Wright LP; Fischer TC; Bohlmann J; Davis AJ; Fenning TM; Gershenzon J; Schmidt A
    Plant Physiol; 2014 Apr; 164(4):2107-22. PubMed ID: 24550241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula.
    Zhao J; Huhman D; Shadle G; He XZ; Sumner LW; Tang Y; Dixon RA
    Plant Cell; 2011 Apr; 23(4):1536-55. PubMed ID: 21467581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa.
    Hancock KR; Collette V; Fraser K; Greig M; Xue H; Richardson K; Jones C; Rasmussen S
    Plant Physiol; 2012 Jul; 159(3):1204-20. PubMed ID: 22566493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Characterization of the Anthocyanidin Reductase Pathway Involved in the Biosynthesis of Flavan-3-ols in Elite Shuchazao Tea (Camellia sinensis) Cultivar in the Field.
    Zhao L; Jiang XL; Qian YM; Wang PQ; Xie DY; Gao LP; Xia T
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29244739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis.
    Zhao J; Dixon RA
    Plant Cell; 2009 Aug; 21(8):2323-40. PubMed ID: 19684242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proanthocyanidin subunit composition determined by functionally diverged dioxygenases.
    Jun JH; Xiao X; Rao X; Dixon RA
    Nat Plants; 2018 Dec; 4(12):1034-1043. PubMed ID: 30478357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.