These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 23289066)
21. Highly biocompatible TiO₂:Gd³⁺ nano-contrast agent with enhanced longitudinal relaxivity for targeted cancer imaging. Chandran P; Sasidharan A; Ashokan A; Menon D; Nair S; Koyakutty M Nanoscale; 2011 Oct; 3(10):4150-61. PubMed ID: 21853215 [TBL] [Abstract][Full Text] [Related]
22. Europium-phenolic network coated BaGdF Zhu W; Liang S; Wang J; Yang Z; Zhang L; Yuan T; Xu Z; Xu H; Li P J Mater Sci Mater Med; 2017 May; 28(5):74. PubMed ID: 28361281 [TBL] [Abstract][Full Text] [Related]
23. Ultrasmall Europium, Gadolinium, and Dysprosium Oxide Nanoparticles: Polyol Synthesis, Properties, and Biomedical Imaging Applications. Yue H; Park JY; Chang Y; Lee GH Mini Rev Med Chem; 2020; 20(17):1767-1780. PubMed ID: 32496986 [TBL] [Abstract][Full Text] [Related]
24. Gd³⁺ Tethered Gold Nanorods for Combined Magnetic Resonance Imaging and Photo-Thermal Therapy. Pitchaimani A; Duong T; Nguyen T; Maurmann L; Key J; Bossmann SH; Aryal S J Biomed Nanotechnol; 2017 Apr; 13(4):417-26. PubMed ID: 29384618 [TBL] [Abstract][Full Text] [Related]
25. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063 [TBL] [Abstract][Full Text] [Related]
26. Intracellular Disassembly of Self-Quenched Nanoparticles Turns NIR Fluorescence on for Sensing Furin Activity in Cells and in Tumors. Yuan Y; Zhang J; Cao Q; An L; Liang G Anal Chem; 2015 Jun; 87(12):6180-5. PubMed ID: 25986852 [TBL] [Abstract][Full Text] [Related]
27. Gadolinium-loaded chitosan nanoparticles as magnetic resonance imaging contrast agents for the diagnosis of tumor. Zhang L; Liu Y; Yu D; Zhangl N J Biomed Nanotechnol; 2013 May; 9(5):863-9. PubMed ID: 23802417 [TBL] [Abstract][Full Text] [Related]
28. Controlled self-assembling of gadolinium nanoparticles as smart molecular magnetic resonance imaging contrast agents. Liang G; Ronald J; Chen Y; Ye D; Pandit P; Ma ML; Rutt B; Rao J Angew Chem Int Ed Engl; 2011 Jul; 50(28):6283-6. PubMed ID: 21618367 [No Abstract] [Full Text] [Related]
29. PEG-capped, lanthanide doped GdF3 nanoparticles: luminescent and T2 contrast agents for optical and MRI multimodal imaging. Passuello T; Pedroni M; Piccinelli F; Polizzi S; Marzola P; Tambalo S; Conti G; Benati D; Vetrone F; Bettinelli M; Speghini A Nanoscale; 2012 Dec; 4(24):7682-9. PubMed ID: 23117700 [TBL] [Abstract][Full Text] [Related]
30. Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 1.5 T MR field. Kim CR; Baeck JS; Chang Y; Bae JE; Chae KS; Lee GH Phys Chem Chem Phys; 2014 Oct; 16(37):19866-73. PubMed ID: 25123195 [TBL] [Abstract][Full Text] [Related]
31. PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity. Liu Z; Pu F; Liu J; Jiang L; Yuan Q; Li Z; Ren J; Qu X Nanoscale; 2013 May; 5(10):4252-61. PubMed ID: 23546530 [TBL] [Abstract][Full Text] [Related]
32. Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies. Zangeneh M; Nedaei HA; Mozdarani H; Mahmoudzadeh A; Salimi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109739. PubMed ID: 31349426 [TBL] [Abstract][Full Text] [Related]
33. Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly(β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: in vitro and in vivo studies. Mortezazadeh T; Gholibegloo E; Alam NR; Dehghani S; Haghgoo S; Ghanaati H; Khoobi M MAGMA; 2019 Aug; 32(4):487-500. PubMed ID: 30730021 [TBL] [Abstract][Full Text] [Related]
34. Alkaline Phosphatase-Instructed Self-Assembly of Gadolinium Nanofibers for Enhanced T Dong L; Qian J; Hai Z; Xu J; Du W; Zhong K; Liang G Anal Chem; 2017 Jul; 89(13):6922-6925. PubMed ID: 28627868 [TBL] [Abstract][Full Text] [Related]
35. Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI. Ferreira MF; Mousavi B; Ferreira PM; Martins CI; Helm L; Martins JA; Geraldes CF Dalton Trans; 2012 May; 41(18):5472-5. PubMed ID: 22467054 [TBL] [Abstract][Full Text] [Related]
37. A multimeric MR-optical contrast agent for multimodal imaging. Harrison VS; Carney CE; Macrenaris KW; Meade TJ Chem Commun (Camb); 2014 Oct; 50(78):11469-71. PubMed ID: 25137290 [TBL] [Abstract][Full Text] [Related]
38. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent. Chen Z; Yu D; Liu C; Yang X; Zhang N; Ma C; Song J; Lu Z J Drug Target; 2011 Sep; 19(8):657-65. PubMed ID: 21091273 [TBL] [Abstract][Full Text] [Related]
39. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging. Tian C; Zhu L; Lin F; Boyes SG ACS Appl Mater Interfaces; 2015 Aug; 7(32):17765-75. PubMed ID: 26147906 [TBL] [Abstract][Full Text] [Related]
40. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Rowe MD; Chang CC; Thamm DH; Kraft SL; Harmon JF; Vogt AP; Sumerlin BS; Boyes SG Langmuir; 2009 Aug; 25(16):9487-99. PubMed ID: 19422256 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]