These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23289096)

  • 1. A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics.
    Takagi R; Fukuda J; Nagata K; Yawata Y; Nomura N; Suzuki H
    Analyst; 2013 Feb; 138(4):1000-3. PubMed ID: 23289096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics.
    Cira NJ; Ho JY; Dueck ME; Weibel DB
    Lab Chip; 2012 Mar; 12(6):1052-9. PubMed ID: 22193301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid screening of antibiotic toxicity in an automated microdroplet system.
    Churski K; Kaminski TS; Jakiela S; Kamysz W; Baranska-Rybak W; Weibel DB; Garstecki P
    Lab Chip; 2012 May; 12(9):1629-37. PubMed ID: 22422170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device.
    Hou Z; An Y; Hjort K; Hjort K; Sandegren L; Wu Z
    Lab Chip; 2014 Sep; 14(17):3409-18. PubMed ID: 25007721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements.
    Sinn I; Kinnunen P; Albertson T; McNaughton BH; Newton DW; Burns MA; Kopelman R
    Lab Chip; 2011 Aug; 11(15):2604-11. PubMed ID: 21666890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid antibiotic susceptibility testing in a microfluidic pH sensor.
    Tang Y; Zhen L; Liu J; Wu J
    Anal Chem; 2013 Mar; 85(5):2787-94. PubMed ID: 23360389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing.
    Kara V; Duan C; Gupta K; Kurosawa S; Stearns-Kurosawa DJ; Ekinci KL
    Lab Chip; 2018 Feb; 18(5):743-753. PubMed ID: 29387860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single-cell drug efflux assay in bacteria by using a directly accessible femtoliter droplet array.
    Iino R; Hayama K; Amezawa H; Sakakihara S; Kim SH; Matsumono Y; Nishino K; Yamaguchi A; Noji H
    Lab Chip; 2012 Oct; 12(20):3923-9. PubMed ID: 22814576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels.
    Chen CH; Lu Y; Sin ML; Mach KE; Zhang DD; Gau V; Liao JC; Wong PK
    Anal Chem; 2010 Feb; 82(3):1012-9. PubMed ID: 20055494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system.
    Choi J; Jung YG; Kim J; Kim S; Jung Y; Na H; Kwon S
    Lab Chip; 2013 Jan; 13(2):280-7. PubMed ID: 23172338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new antimicrobial susceptibility testing method of Escherichia coli against ampicillin by MSPQC.
    He F; Zhou J
    J Microbiol Methods; 2007 Mar; 68(3):563-7. PubMed ID: 17175051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume cytometry: microfluidic sensor for high-throughput screening in real time.
    Ateya DA; Sachs F; Gottlieb PA; Besch S; Hua SZ
    Anal Chem; 2005 Mar; 77(5):1290-4. PubMed ID: 15732909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Millifluidic droplet analyser for microbiology.
    Baraban L; Bertholle F; Salverda ML; Bremond N; Panizza P; Baudry J; de Visser JA; Bibette J
    Lab Chip; 2011 Dec; 11(23):4057-62. PubMed ID: 22012599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Methods for the rapid determination of microbial sensitivity to antibiotics].
    D'iakov SI; Il'na NIu; Lebedeva IK
    Antibiotiki; 1983 Jul; 28(7):545-54. PubMed ID: 6354076
    [No Abstract]   [Full Text] [Related]  

  • 15. Determination of antibiotic EC50 using a zero-flow microfluidic chip based growth phenotype assay.
    Dai J; Suh SJ; Hamon M; Hong JW
    Biotechnol J; 2015 Sep; 10(11):1783-91. PubMed ID: 26110969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes.
    Etayash H; Khan MF; Kaur K; Thundat T
    Nat Commun; 2016 Oct; 7():12947. PubMed ID: 27698375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform.
    Kaushik AM; Hsieh K; Chen L; Shin DJ; Liao JC; Wang TH
    Biosens Bioelectron; 2017 Nov; 97():260-266. PubMed ID: 28609716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agar shake tube technique for simultaneous determination of aerobic and anaerobic susceptibility to antibiotics.
    Evans JB; Harrell LJ
    Antimicrob Agents Chemother; 1977 Oct; 12(4):534-6. PubMed ID: 335961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid quantification of bacterial cells in potable water using a simplified microfluidic device.
    Sakamoto C; Yamaguchi N; Yamada M; Nagase H; Seki M; Nasu M
    J Microbiol Methods; 2007 Mar; 68(3):643-7. PubMed ID: 17182141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of a method for the quantitative evaluation of microorganism sensitivity to antibiotics utilizing disks. The determination of the minimal doxycycline concentration that depresses microorganism growth using disks containing this antibiotic].
    Chaĭkovskaia SM; Rezvan SP; Rabinovich AS; Galkina TP; Dmitrova LI
    Antibiotiki; 1978 Feb; 23(2):118-22. PubMed ID: 343709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.