These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2328911)

  • 1. Biotransformations of aromatic aldehydes by acetogenic bacteria.
    Lux MF; Keith E; Hsu TD; Drake HL
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):73-7. PubMed ID: 2328911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of aromatic aldehydes as cosubstrates by the acetogen Clostridium formicoaceticum.
    Frank C; Schwarz U; Matthies C; Drake HL
    Arch Microbiol; 1998 Nov; 170(6):427-34. PubMed ID: 9799286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth.
    Lux MF; Drake HL
    FEMS Microbiol Lett; 1992 Aug; 74(1):49-56. PubMed ID: 1516807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions.
    Hsu T; Daniel SL; Lux MF; Drake HL
    J Bacteriol; 1990 Jan; 172(1):212-7. PubMed ID: 2104603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
    Seifritz C; Daniel SL; Gössner A; Drake HL
    J Bacteriol; 1993 Dec; 175(24):8008-13. PubMed ID: 8253688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional transformation of aromatic aldehydes by Desulfovibrio desulfuricans under nitrate-dissimilating conditions.
    Parekh M; Drake HL; Daniel SL
    Lett Appl Microbiol; 1996 Feb; 22(2):115-20. PubMed ID: 8936370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds.
    Parekh M; Keith ES; Daniel SL; Drake HL
    FEMS Microbiol Lett; 1992 Jul; 73(1-2):69-74. PubMed ID: 1521774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum.
    Hsu TD; Lux MF; Drake HL
    J Bacteriol; 1990 Oct; 172(10):5901-7. PubMed ID: 2120194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum.
    Diekert GB; Thauer RK
    J Bacteriol; 1978 Nov; 136(2):597-606. PubMed ID: 711675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. COS degradation by selected CO-utilizing bacteria. Scientific note.
    Smith KD; Klasson KT; Ackerson MD; Clausen EC; Gaddy JL
    Appl Biochem Biotechnol; 1991; 28-29():787-96. PubMed ID: 1929384
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.
    Daniel SL; Hsu T; Dean SI; Drake HL
    J Bacteriol; 1990 Aug; 172(8):4464-71. PubMed ID: 2376565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Sep; 35(37):12119-25. PubMed ID: 8810918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sodium ion gradient as energy source for Peptostreptococcus asaccharolyticus.
    Wohlfarth G; Buckel W
    Arch Microbiol; 1985 Jul; 142(2):128-35. PubMed ID: 4037980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The isolation and properties of the predominant anaerobic bacteria in the caeca of chickens and turkeys.
    Barnes EM; Impey CS
    Br Poult Sci; 1970 Oct; 11(4):467-81. PubMed ID: 4920052
    [No Abstract]   [Full Text] [Related]  

  • 15. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.
    Panoutsopoulos GI; Kouretas D; Beedham C
    Chem Res Toxicol; 2004 Oct; 17(10):1368-76. PubMed ID: 15487898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity.
    Daniel SL; Keith ES; Yang H; Lin YS; Drake HL
    Biochem Biophys Res Commun; 1991 Oct; 180(1):416-22. PubMed ID: 1930235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum.
    Wu ZR; Daniel SL; Drake HL
    J Bacteriol; 1988 Dec; 170(12):5747-50. PubMed ID: 3192514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of tungstate and/or molybdate in the formation of aldehyde oxidoreductase in Clostridium thermoaceticum and other acetogens; immunological distances of such enzymes.
    White H; Simon H
    Arch Microbiol; 1992; 158(2):81-4. PubMed ID: 1417415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered
    Kim HS; Choi JA; Kim BY; Ferrer L; Choi JM; Wendisch VF; Lee JH
    Front Bioeng Biotechnol; 2022; 10():880277. PubMed ID: 35646884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1.
    Misoph M; Drake HL
    J Bacteriol; 1996 Jun; 178(11):3140-5. PubMed ID: 8655492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.