These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23289341)

  • 1. [Design and fabrication of the nickel-free stainless steel coronary stent].
    Teng Y; Zheng F; Zhang B; YangKe
    Zhongguo Yi Liao Qi Xie Za Zhi; 2012 Sep; 36(5):354-6. PubMed ID: 23289341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal processing and characterization of 316LVM cardiovascular stent.
    Verma A; Choubey A; Raval A; Kothwala D
    Biomed Mater Eng; 2006; 16(6):381-95. PubMed ID: 17119277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process of prototyping coronary stents from biodegradable Fe-Mn alloys.
    Hermawan H; Mantovani D
    Acta Biomater; 2013 Nov; 9(10):8585-92. PubMed ID: 23665503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis.
    Kumar GV; Mathew L
    Cardiovasc Revasc Med; 2009; 10(4):247-51. PubMed ID: 19815172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application.
    Ren Y; Zhao H; Liu W; Yang K
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():293-297. PubMed ID: 26706533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research on the coupling expansion deformation behavior of coronary stainless steel stent in vitro].
    Wang W; Feng H; Wang X; Chen Y; Zhang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Oct; 30(5):1027-32, 1062. PubMed ID: 24459965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical polishing of 316L stainless steel slotted tube coronary stents.
    Zhao H; Van Humbeeck J; Sohier J; De Scheerder I
    J Mater Sci Mater Med; 2002 Oct; 13(10):911-6. PubMed ID: 15348183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic hypersensitivity reaction to endovascular stainless steel stent.
    Univers J; Long C; Tonks SA; Freeman MB
    J Vasc Surg; 2018 Feb; 67(2):615-617. PubMed ID: 29248243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface conditioning of 316LVM slotted tube cardiovascular stents.
    Raval A; Choubey A; Engineer C; Kothwala D
    J Biomater Appl; 2005 Jan; 19(3):197-213. PubMed ID: 15613380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative biocompatibility evaluation of nickel-free high-nitrogen stainless steel in vitro/in vivo.
    Inoue M; Sasaki M; Katada Y; Taguchi T
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):68-72. PubMed ID: 23852917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences of platelet adhesion and thrombus activation on amorphous silicon carbide, magnesium alloy, stainless steel, and cobalt chromium stent surfaces.
    Hansi C; Arab A; Rzany A; Ahrens I; Bode C; Hehrlein C
    Catheter Cardiovasc Interv; 2009 Mar; 73(4):488-96. PubMed ID: 19235237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall.
    Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G
    Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon-carbide coated coronary stents have low platelet and leukocyte adhesion during platelet activation.
    Monnink SH; van Boven AJ; Peels HO; Tigchelaar I; de Kam PJ; Crijns HJ; van Oeveren W
    J Investig Med; 1999 Jul; 47(6):304-10. PubMed ID: 10431485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal allergic reaction in chronic refractory in-stent restenosis.
    Saito T; Hokimoto S; Oshima S; Noda K; Kojyo Y; Matsunaga K
    Cardiovasc Revasc Med; 2009; 10(1):17-22. PubMed ID: 19159850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical comparative analysis of stents for colorectal obstruction.
    Domingo S; Puértolas S; Gracia-Villa L; Puértolas JA
    Minim Invasive Ther Allied Technol; 2007; 16(2):126-36. PubMed ID: 17474056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of 308 nanometer excimer laser energy on 316 L stainless-steel stents: implications for laser atherectomy of in-stent restenosis.
    Burris N; Lippincott RA; Elfe A; Tcheng JE; O'Shea JC; Reiser C
    J Invasive Cardiol; 2000 Nov; 12(11):555-9. PubMed ID: 11060568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Coronary endoprostheses (stents)].
    Sigwart U
    Herz; 1990 Oct; 15(5):319-28. PubMed ID: 2227767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of grain size on the ductility of micro-scale stainless steel stent struts.
    Murphy BP; Cuddy H; Harewood FJ; Connolley T; McHugh PE
    J Mater Sci Mater Med; 2006 Jan; 17(1):1-6. PubMed ID: 16389466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel-free stainless steel avoids neointima formation following coronary stent implantation.
    Fujiu K; Manabe I; Sasaki M; Inoue M; Iwata H; Hasumi E; Komuro I; Katada Y; Taguchi T; Nagai R
    Sci Technol Adv Mater; 2012 Dec; 13(6):064218. PubMed ID: 27877545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.