These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23289603)

  • 1. Reactivity indices profile: a companion tool of the potential energy surface for the analysis of reaction mechanisms. Nucleophilic aromatic substitution reactions as test case.
    Ormazábal-Toledo R; Contreras R; Campodónico PR
    J Org Chem; 2013 Feb; 78(3):1091-7. PubMed ID: 23289603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific nucleophile-electrophile interactions in nucleophilic aromatic substitutions.
    Ormazábal-Toledo R; Contreras R; Tapia RA; Campodónico PR
    Org Biomol Chem; 2013 Apr; 11(14):2302-9. PubMed ID: 23423183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative characterization of group electrophilicity and nucleophilicity for intramolecular Diels-Alder reactions.
    Soto-Delgado J; Domingo LR; Contreras R
    Org Biomol Chem; 2010 Aug; 8(16):3678-83. PubMed ID: 20526483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global and local reactivity indices for electrophilic/nucleophilic free radicals.
    Domingo LR; Pérez P
    Org Biomol Chem; 2013 Jul; 11(26):4350-8. PubMed ID: 23685829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in our mechanistic understanding of S(N)V reactions.
    Bernasconi CF; Rappoport Z
    Acc Chem Res; 2009 Aug; 42(8):993-1003. PubMed ID: 19522460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enamides and enecarbamates as nucleophiles in stereoselective C-C and C-N bond-forming reactions.
    Matsubara R; Kobayashi S
    Acc Chem Res; 2008 Feb; 41(2):292-301. PubMed ID: 18281949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleophilicity and leaving-group ability in frontside and backside S(N)2 reactions.
    Bento AP; Bickelhaupt FM
    J Org Chem; 2008 Sep; 73(18):7290-9. PubMed ID: 18690745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the superelectrophilic dimension through sigma-complexation, SNAr and Diels-Alder reactivity.
    Buncel E; Terrier F
    Org Biomol Chem; 2010 May; 8(10):2285-308. PubMed ID: 20448887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Do Aromatic Nitro Compounds React with Nucleophiles? Theoretical Description Using Aromaticity, Nucleophilicity and Electrophilicity Indices.
    Błaziak K; Danikiewicz W; Mąkosza M
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleophilic Aromatic Substitution Reactions Described by the Local Electron Attachment Energy.
    Stenlid JH; Brinck T
    J Org Chem; 2017 Mar; 82(6):3072-3083. PubMed ID: 28195731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise walden inversion in nucleophilic substitution at phosphorus.
    van Bochove MA; Swart M; Bickelhaupt FM
    Phys Chem Chem Phys; 2009 Jan; 11(2):259-67. PubMed ID: 19088981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen bonding lowers intrinsic nucleophilicity of solvated nucleophiles.
    Chen X; Brauman JI
    J Am Chem Soc; 2008 Nov; 130(45):15038-46. PubMed ID: 18928286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Reaction Processes On the Basis of the Evolution of Dynamic Orbital Forces: Examples of Cycloadditions, S
    Chaquin P; Fuster F
    Chemphyschem; 2017 Oct; 18(20):2873-2880. PubMed ID: 28745451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphilic descriptor for chemical reactivity and selectivity.
    Padmanabhan J; Parthasarathi R; Elango M; Subramanian V; Krishnamoorthy BS; Gutierrez-Oliva S; Toro-Labbé A; Roy DR; Chattaraj PK
    J Phys Chem A; 2007 Sep; 111(37):9130-8. PubMed ID: 17715901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.
    Fernández I; Bickelhaupt FM; Cossío FP
    Chemistry; 2009 Dec; 15(47):13022-32. PubMed ID: 19852009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-determining factors in nucleophilic aromatic substitution reactions.
    Fernández I; Frenking G; Uggerud E
    J Org Chem; 2010 May; 75(9):2971-80. PubMed ID: 20353177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenomenological description of a three-center insertion reaction: an information-theoretic study.
    Esquivel RO; Flores-Gallegos N; Dehesa JS; Angulo JC; Antolín J; López-Rosa S; Sen KD
    J Phys Chem A; 2010 Feb; 114(4):1906-16. PubMed ID: 20050637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic transition state poise and transition state analogues.
    Schramm VL
    Acc Chem Res; 2003 Aug; 36(8):588-96. PubMed ID: 12924955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activation of electrophile, nucleophile and leaving group during the reaction catalysed by pI258 arsenate reductase.
    Roos G; Loverix S; Brosens E; Van Belle K; Wyns L; Geerlings P; Messens J
    Chembiochem; 2006 Jun; 7(6):981-9. PubMed ID: 16607668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting the Dielectric Constant Effect on the Nucleophile and Leaving Group of Prototypical Backside S
    Pedraza-González L; Galindo JF; González R; Reyes A
    J Phys Chem A; 2016 Oct; 120(42):8360-8368. PubMed ID: 27718576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.