These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2328997)

  • 1. The application of neural networks to myoelectric signal analysis: a preliminary study.
    Kelly MF; Parker PA; Scott RN
    IEEE Trans Biomed Eng; 1990 Mar; 37(3):221-30. PubMed ID: 2328997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural network classification of myoelectric signal for prosthesis control.
    Kelly MF; Parker PA; Scott RN
    J Electromyogr Kinesiol; 1991 Dec; 1(4):229-36. PubMed ID: 20870513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoelectric signal analysis using neural networks.
    Kelly MF; Parker PA; Scott RN
    IEEE Eng Med Biol Mag; 1990; 9(1):61-4. PubMed ID: 18238322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channel and feature selection in multifunction myoelectric control.
    Khushaba RN; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5182-5. PubMed ID: 18003175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new strategy for multifunction myoelectric control.
    Hudgins B; Parker P; Scott RN
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):82-94. PubMed ID: 8468080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive neuro-fuzzy logic analysis based on myoelectric signals for multifunction prosthesis control.
    Favieiro GW; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7888-91. PubMed ID: 22256169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements.
    Cheron G; Draye JP; Bourgeios M; Libert G
    IEEE Trans Biomed Eng; 1996 May; 43(5):552-8. PubMed ID: 8849468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoelectric signal classification using neural networks.
    Ungureanu M; Strungaru R; Lazarescu V
    Biomed Tech (Berl); 1998; 43 Suppl 3():87-90. PubMed ID: 11776230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous myoelectric control for powered prostheses using hidden Markov models.
    Chan AD; Englehart KB
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):121-4. PubMed ID: 15651571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis.
    Karlik B; Tokhi MO; Alci M
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1255-61. PubMed ID: 14619995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust EMG sensing system based on data fusion for myoelectric control of a robotic arm.
    López NM; di Sciascio F; Soria CM; Valentinuzzi ME
    Biomed Eng Online; 2009 Feb; 8():5. PubMed ID: 19243627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
    Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM
    Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface myoelectric signal analysis: dynamic approaches for change detection and classification.
    Al-Assaf Y
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2248-56. PubMed ID: 17073330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auto-association by multilayer perceptrons and singular value decomposition.
    Bourlard H; Kamp Y
    Biol Cybern; 1988; 59(4-5):291-4. PubMed ID: 3196773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuzzy discriminant analysis based feature projection in myoelectric control.
    Khushaba RN; Al-Jumaily A; Al-Ani A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5049-52. PubMed ID: 19163851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue estimation with a multivariable myoelectric mapping function.
    MacIsaac DT; Parker PA; Englehart KB; Rogers DR
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):694-700. PubMed ID: 16602576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.