These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 2329000)
1. Potential distribution in three-dimensional periodic myocardium--Part I: Solution with two-scale asymptotic analysis. Krassowska W; Pilkington TC; Ideker RE IEEE Trans Biomed Eng; 1990 Mar; 37(3):252-66. PubMed ID: 2329000 [TBL] [Abstract][Full Text] [Related]
2. Modelling the periodicity of cardiac muscle. Krassowska W; Pilkington TC; Ideker RE J Electrocardiol; 1989; 22 Suppl():41-7. PubMed ID: 2614313 [TBL] [Abstract][Full Text] [Related]
3. Potential distribution in three-dimensional periodic myocardium--Part II: Application to extracellular stimulation. Krassowska W; Frazier DW; Pilkington TC; Ideker RE IEEE Trans Biomed Eng; 1990 Mar; 37(3):267-84. PubMed ID: 2329001 [TBL] [Abstract][Full Text] [Related]
4. Discrete versus syncytial tissue behavior in a model of cardiac stimulation--II: Results of simulation. Trayanova N IEEE Trans Biomed Eng; 1996 Dec; 43(12):1141-50. PubMed ID: 9214833 [TBL] [Abstract][Full Text] [Related]
5. Discrete versus syncytial tissue behavior in a model of cardiac stimulation--I: Mathematical formulation. Trayanova N IEEE Trans Biomed Eng; 1996 Dec; 43(12):1129-40. PubMed ID: 9214832 [TBL] [Abstract][Full Text] [Related]
6. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model. Huang Q; Eason JC; Claydon FJ IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823 [TBL] [Abstract][Full Text] [Related]
7. A bidomain model with periodic intracellular junctions: a one-dimensional analysis. Trayanova N; Pilkington TC IEEE Trans Biomed Eng; 1993 May; 40(5):424-33. PubMed ID: 8225331 [TBL] [Abstract][Full Text] [Related]
8. Effects of the tissue-bath interface on the induced transmembrane potential: a modeling study in cardiac stimulation. Trayanova NA Ann Biomed Eng; 1997; 25(5):783-92. PubMed ID: 9300102 [TBL] [Abstract][Full Text] [Related]
9. Field stimulation of cardiac fibers with random spatial structure. Krassowska W IEEE Trans Biomed Eng; 2003 Jan; 50(1):33-40. PubMed ID: 12617522 [TBL] [Abstract][Full Text] [Related]
10. Control of rotating waves in cardiac muscle: analysis of the effect of an electric field. Pumir A; Plaza F; Krinsky VI Proc Biol Sci; 1994 Aug; 257(1349):129-34. PubMed ID: 7972160 [TBL] [Abstract][Full Text] [Related]
11. A generalized activating function for predicting virtual electrodes in cardiac tissue. Sobie EA; Susil RC; Tung L Biophys J; 1997 Sep; 73(3):1410-23. PubMed ID: 9284308 [TBL] [Abstract][Full Text] [Related]
12. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis. Bauer S; Röder G; Bär M Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261 [TBL] [Abstract][Full Text] [Related]
13. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Neunlist M; Tung L Biophys J; 1995 Jun; 68(6):2310-22. PubMed ID: 7647235 [TBL] [Abstract][Full Text] [Related]
14. Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. Latimer DC; Roth BJ IEEE Trans Biomed Eng; 1998 Dec; 45(12):1449-58. PubMed ID: 9835193 [TBL] [Abstract][Full Text] [Related]