These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2329000)

  • 21. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the electric axis of stimulation on the induced transmembrane potentials in ellipsoidal bidomain heart.
    Entcheva E
    Ann Biomed Eng; 2000 Mar; 28(3):244-52. PubMed ID: 10784089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymptotic model of electrical stimulation of nerve fibers.
    Cranford JP; Kim BJ; Neu WK
    Med Biol Eng Comput; 2012 Mar; 50(3):243-51. PubMed ID: 22350436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An approximate solution to the periodic bidomain equations in one dimension.
    Trayanova N
    Math Biosci; 1994 Apr; 120(2):189-210. PubMed ID: 8204984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional pseudospectral modelling of cardiac propagation in an inhomogeneous anisotropic tissue.
    Ng KT; Yan R
    Med Biol Eng Comput; 2003 Nov; 41(6):618-24. PubMed ID: 14686586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Approximate analytical solutions of the Bidomain equations for electrical stimulation of cardiac tissue with curving fibers.
    Roth BJ; Langrill Beaudoin D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051925. PubMed ID: 12786196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Entrainment by an extracellular AC stimulus in a computational model of cardiac tissue.
    Meunier JM; Trayanova NA; Gray RA
    J Cardiovasc Electrophysiol; 2001 Oct; 12(10):1176-84. PubMed ID: 11699528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cardiac structure and electrical activation: models and measurement.
    Smaill BH; LeGrice IJ; Hooks DA; Pullan AJ; Caldwell BJ; Hunter PJ
    Clin Exp Pharmacol Physiol; 2004 Dec; 31(12):913-9. PubMed ID: 15659059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling extracellular electrical stimulation: part 3. Derivation and interpretation of neural tissue equations.
    Meffin H; Tahayori B; Sergeev EN; Mareels IM; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):065004. PubMed ID: 25419585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass.
    Lunkenheimer PP; Redmann K; Westermann P; Rothaus K; Cryer CW; Niederer P; Anderson RH
    Eur J Cardiothorac Surg; 2006 Apr; 29 Suppl 1():S41-9. PubMed ID: 16567107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model.
    He B; Li G; Zhang X
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1190-202. PubMed ID: 14560773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle.
    Roth BJ
    J Math Biol; 1992; 30(6):633-46. PubMed ID: 1640183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle.
    Roberge FA; Vinet A; Victorri B
    Circ Res; 1986 Apr; 58(4):461-75. PubMed ID: 3698214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation.
    Trayanova NA; Roth BJ; Malden LJ
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):899-908. PubMed ID: 8288281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of rhythms during periodic stimulation of embryonic chick heart cell aggregates.
    Zeng WZ; Glass L; Shrier A
    Circ Res; 1991 Oct; 69(4):1022-33. PubMed ID: 1934330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation of propagation along a cylindrical bundle of cardiac tissue--II: Results of simulation.
    Henriquez CS; Plonsey R
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):861-75. PubMed ID: 2227973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of plunge electrodes during electrical stimulation of cardiac tissue.
    Langrill DM; Roth BJ
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1207-11. PubMed ID: 11585046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element analysis of cardiac defibrillation current distributions.
    Sepulveda NG; Wikswo JP; Echt DS
    IEEE Trans Biomed Eng; 1990 Apr; 37(4):354-65. PubMed ID: 2338348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model.
    Franzone PC; Guerri L
    Math Biosci; 1993 Feb; 113(2):145-209. PubMed ID: 8431650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.