BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23290031)

  • 21. FtsH-dependent degradation of phage shock protein C in Yersinia enterocolitica and Escherichia coli.
    Singh S; Darwin AJ
    J Bacteriol; 2011 Dec; 193(23):6436-42. PubMed ID: 21965563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of inducers of the Yersinia enterocolitica phage shock protein system and comparison to the regulation of the RpoE and Cpx extracytoplasmic stress responses.
    Maxson ME; Darwin AJ
    J Bacteriol; 2004 Jul; 186(13):4199-208. PubMed ID: 15205422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF.
    Elderkin S; Bordes P; Jones S; Rappas M; Buck M
    J Bacteriol; 2005 May; 187(9):3238-48. PubMed ID: 15838051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Tat system for membrane translocation of folded proteins recruits the membrane-stabilizing Psp machinery in Escherichia coli.
    Mehner D; Osadnik H; Lünsdorf H; Brüser T
    J Biol Chem; 2012 Aug; 287(33):27834-42. PubMed ID: 22689583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions between phage-shock proteins in Escherichia coli.
    Adams H; Teertstra W; Demmers J; Boesten R; Tommassen J
    J Bacteriol; 2003 Feb; 185(4):1174-80. PubMed ID: 12562786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for a second regulatory binding site on PspF that is occupied by the C-terminal domain of PspA.
    Heidrich ES; Brüser T
    PLoS One; 2018; 13(6):e0198564. PubMed ID: 29906279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo localizations of membrane stress controllers PspA and PspG in Escherichia coli.
    Engl C; Jovanovic G; Lloyd LJ; Murray H; Spitaler M; Ying L; Errington J; Buck M
    Mol Microbiol; 2009 Aug; 73(3):382-96. PubMed ID: 19555453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and function of PspA and Vipp1 N-terminal peptides: Insights into the membrane stress sensing and mitigation.
    McDonald C; Jovanovic G; Wallace BA; Ces O; Buck M
    Biochim Biophys Acta Biomembr; 2017 Jan; 1859(1):28-39. PubMed ID: 27806910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli.
    Jovanovic G; Mehta P; McDonald C; Davidson AC; Uzdavinys P; Ying L; Buck M
    J Mol Biol; 2014 Apr; 426(7):1498-511. PubMed ID: 24361331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretin-induced stress in Escherichia coli.
    Jovanovic G; Engl C; Buck M
    Mol Microbiol; 2009 Oct; 74(1):16-28. PubMed ID: 19682256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology.
    Joly N; Engl C; Jovanovic G; Huvet M; Toni T; Sheng X; Stumpf MP; Buck M
    FEMS Microbiol Rev; 2010 Sep; 34(5):797-827. PubMed ID: 20636484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PspF-binding domain PspA1-144 and the PspA·F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins.
    Osadnik H; Schöpfel M; Heidrich E; Mehner D; Lilie H; Parthier C; Risselada HJ; Grubmüller H; Stubbs MT; Brüser T
    Mol Microbiol; 2015 Nov; 98(4):743-59. PubMed ID: 26235546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A key hydrophobic patch identified in an AAA⁺ protein essential for its in trans inhibitory regulation.
    Zhang N; Simpson T; Lawton E; Uzdavinys P; Joly N; Burrows P; Buck M
    J Mol Biol; 2013 Aug; 425(15):2656-69. PubMed ID: 23659791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF.
    Elderkin S; Jones S; Schumacher J; Studholme D; Buck M
    J Mol Biol; 2002 Jun; 320(1):23-37. PubMed ID: 12079332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1.
    Wallrodt I; Jelsbak L; Thomsen LE; Brix L; Lemire S; Gautier L; Nielsen DS; Jovanovic G; Buck M; Olsen JE
    J Med Microbiol; 2014 Jun; 63(Pt 6):788-795. PubMed ID: 24713356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of the phage-shock-protein (Psp) regulatory complex that govern signal transduction and induction of the Psp response in Escherichia coli.
    Jovanovic G; Engl C; Mayhew AJ; Burrows PC; Buck M
    Microbiology (Reading); 2010 Oct; 156(Pt 10):2920-2932. PubMed ID: 20595257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variations on a theme: evolution of the phage-shock-protein system in Actinobacteria.
    Ravi J; Anantharaman V; Aravind L; Gennaro ML
    Antonie Van Leeuwenhoek; 2018 May; 111(5):753-760. PubMed ID: 29488183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the Streptomyces lividans PspA response.
    Vrancken K; Van Mellaert L; Anné J
    J Bacteriol; 2008 May; 190(10):3475-81. PubMed ID: 18326578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions.
    Kleerebezem M; Crielaard W; Tommassen J
    EMBO J; 1996 Jan; 15(1):162-71. PubMed ID: 8598199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms.
    Weiner L; Brissette JL; Model P
    Genes Dev; 1991 Oct; 5(10):1912-23. PubMed ID: 1717346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.