BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2329017)

  • 1. Ablation of natural killer cell function by soluble cardiotoxin.
    Xiao LJ; Hinman CL
    Int J Immunopharmacol; 1990; 12(3):247-54. PubMed ID: 2329017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cardiotoxin D from Naja naja siamensis snake venom upon murine splenic lymphocytes.
    Hinman CL; Lepisto E; Stevens R; Montgomery IN; Rauch HC; Hudson RA
    Toxicon; 1987; 25(9):1011-4. PubMed ID: 3433298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective cytolysis by a protein toxin as a consequence of direct interaction with the lymphocyte plasma membrane.
    Hinman CL; Jiang XL; Tang HP
    Toxicol Appl Pharmacol; 1990 Jun; 104(2):290-300. PubMed ID: 2363180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation.
    Teng CM; Jy W; Ouyang C
    Toxicon; 1984; 22(3):463-70. PubMed ID: 6474495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid sequence of a cytotoxin-like basic protein with low cytotoxic activity from the venom of the Thailand cobra Naja naja siamensis.
    Inoue S; Ohkura K; Ikeda K; Hayashi K
    FEBS Lett; 1987 Jun; 218(1):17-21. PubMed ID: 3595859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-fracture study of cardiotoxin action on axonal membrane and axonal membrane lipid vesicles.
    Gulik-Krzywicki T; Balerna M; Vincent JP; Lazdunski M
    Biochim Biophys Acta; 1981 Apr; 643(1):101-14. PubMed ID: 7236681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells.
    Kumar V; Luevano E; Bennett M
    J Exp Med; 1979 Sep; 150(3):531-47. PubMed ID: 383877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of mast cells and PMN leukocytes in cardiotoxin-induced rat paw edema.
    Wang JP; Teng CM
    Eur J Pharmacol; 1989 Feb; 161(1):9-18. PubMed ID: 2721549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of rhodopsin by the combined action of cardiotoxin and phospholipase A2 on rod outer segment membranes.
    Rivas EA; Le Maire M; Gulik-Krzywicki T
    Biochim Biophys Acta; 1981 Jun; 644(1):127-33. PubMed ID: 7260064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced natural killer (NK) cell activity and NK-sensitive thymic cells in murine muscular dystrophy.
    Semple JW; Szewczuk MR
    Cell Immunol; 1983 Dec; 82(2):316-25. PubMed ID: 6652689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiotoxin from cobra venom increases the level of phosphatidylinositol 4-monophosphate and phosphatidylinositol kinase activity in two cell lines.
    Lo TN; Eng SP; Jaseph LA; Beaven MA; Lo CS
    Biochim Biophys Acta; 1988 Jun; 970(1):51-60. PubMed ID: 2453219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cobra venom cardiotoxin on locust skeletal muscle.
    Deitmer JW; Primor N; Zlotkin E
    J Invertebr Pathol; 1977 Sep; 30(2):232-6. PubMed ID: 908840
    [No Abstract]   [Full Text] [Related]  

  • 13. On the interaction of cobra venom protein cardiotoxins with erythrocytes.
    Zusman N; Miklas TM; Graves T; Dambach GE; Hudson RA
    Biochem Biophys Res Commun; 1984 Oct; 124(2):629-36. PubMed ID: 6333874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of monoclonal antibody specific for Naja nivea cardiotoxin VII1.
    Kfir R; Botes DP; Osthoff G
    Toxicon; 1985; 23(1):135-44. PubMed ID: 3992596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the anticoagulants from Taiwan cobra (Naja naja atra) snake venom.
    Teng CM; Kuo YP; Lee LG; Ouyang CH
    Toxicon; 1987; 25(2):201-10. PubMed ID: 3576637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemolytic activity of thionin from Pyrularia pubera nuts and snake venom toxins of Naja naja species: Pyrularia thionin and snake venom cardiotoxin compete for the same membrane site.
    Osorio e Castro VR; Vernon LP
    Toxicon; 1989; 27(5):511-7. PubMed ID: 2749751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of divalent cations on snake venom cardiotoxin-induced hemolysis and 3H-deoxyglucose-6-phosphate release from human red blood cells.
    Jiang MS; Fletcher JE; Smith LA
    Toxicon; 1989; 27(12):1297-305. PubMed ID: 2629171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged complement activation in mice.
    Simpson IJ; Moran J; Evans DJ; Peters DK
    Kidney Int; 1978 Jun; 13(6):467-71. PubMed ID: 713282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobra venom cardiotoxins as probes of altered membrane structure in dystrophic skeletal muscle.
    Parker CJ; Hudson RA
    Biochem Biophys Res Commun; 1981 May; 100(2):746-52. PubMed ID: 6268074
    [No Abstract]   [Full Text] [Related]  

  • 20. Interactions in red blood cells between fatty acids and either snake venom cardiotoxin or halothane.
    Fletcher JE; Jiang MS; Tripolitis L; Smith LA; Beech J
    Toxicon; 1990; 28(6):657-67. PubMed ID: 2402762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.