These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23290482)

  • 1. A quality control method for detecting and suppressing uncorrected residual motion in fMRI studies.
    Christodoulou AG; Bauer TE; Kiehl KA; Feldstein Ewing SW; Bryan AD; Calhoun VD
    Magn Reson Imaging; 2013 Jun; 31(5):707-17. PubMed ID: 23290482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion.
    Morgan VL; Dawant BM; Li Y; Pickens DR
    Comput Med Imaging Graph; 2007 Sep; 31(6):436-46. PubMed ID: 17574816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI.
    Chowdhury ME; Mullinger KJ; Glover P; Bowtell R
    Neuroimage; 2014 Jan; 84():307-19. PubMed ID: 23994127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of motion-related artifacts in resting state fMRI using aCompCor.
    Muschelli J; Nebel MB; Caffo BS; Barber AD; Pekar JJ; Mostofsky SH
    Neuroimage; 2014 Aug; 96():22-35. PubMed ID: 24657780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data.
    Bright MG; Murphy K
    Neuroimage; 2013 Jan; 64(6):526-37. PubMed ID: 23006803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations.
    Bianciardi M; van Gelderen P; Duyn JH; Fukunaga M; de Zwart JA
    Neuroimage; 2009 Jan; 44(2):448-54. PubMed ID: 18835582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin saturation artifact correction using slice-to-volume registration motion estimates for fMRI time series.
    Bhagalia R; Kim B
    Med Phys; 2008 Feb; 35(2):424-34. PubMed ID: 18383662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods to detect, characterize, and remove motion artifact in resting state fMRI.
    Power JD; Mitra A; Laumann TO; Snyder AZ; Schlaggar BL; Petersen SE
    Neuroimage; 2014 Jan; 84():320-41. PubMed ID: 23994314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.
    Patriat R; Molloy EK; Birn RM
    Brain Connect; 2015 Nov; 5(9):582-95. PubMed ID: 26107049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of motion correction and physiological noise regression in fMRI.
    Jones TB; Bandettini PA; Birn RM
    Neuroimage; 2008 Aug; 42(2):582-90. PubMed ID: 18583155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion robust magnetic susceptibility and field inhomogeneity estimation using regularized image restoration techniques for fMRI.
    Yeo DT; Fessler JA; Kim B
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):991-8. PubMed ID: 18979842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective slice-by-slice motion correction reduces false positive activations in fMRI with task-correlated motion.
    Schulz J; Siegert T; Bazin PL; Maclaren J; Herbst M; Zaitsev M; Turner R
    Neuroimage; 2014 Jan; 84():124-32. PubMed ID: 23954484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis.
    Liao R; McKeown MJ; Krolik JL
    Magn Reson Med; 2006 Jun; 55(6):1396-413. PubMed ID: 16676336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system.
    Maziero D; Velasco TR; Hunt N; Payne E; Lemieux L; Salmon CEG; Carmichael DW
    Neuroimage; 2016 Sep; 138():13-27. PubMed ID: 27157789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An information-theoretic criterion for intrasubject alignment of FMRI time series: motion corrected independent component analysis.
    Liao R; Krolik JL; McKeown MJ
    IEEE Trans Med Imaging; 2005 Jan; 24(1):29-44. PubMed ID: 15638184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized INverse imaging (GIN): ultrafast fMRI with physiological noise correction.
    Boyacioğlu R; Barth M
    Magn Reson Med; 2013 Oct; 70(4):962-71. PubMed ID: 23097342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI.
    Barry RL; Williams JM; Klassen LM; Gallivan JP; Culham JC; Menon RS
    Magn Reson Imaging; 2010 Feb; 28(2):235-44. PubMed ID: 19695810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.
    Hallquist MN; Hwang K; Luna B
    Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous registration and activation detection for fMRI.
    Orchard J; Greif C; Golub GH; Bjornson B; Atkins MS
    IEEE Trans Med Imaging; 2003 Nov; 22(11):1427-35. PubMed ID: 14606676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting multi-subject random effects in fMRI: advocating prevalence estimation.
    Rosenblatt JD; Vink M; Benjamini Y
    Neuroimage; 2014 Jan; 84():113-21. PubMed ID: 23988271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.