These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23290820)

  • 1. FT-Raman spectroscopic study of human skin subjected to uniaxial stress.
    Gąsior-Głogowska M; Komorowska M; Hanuza J; Mączka M; Zając A; Ptak M; Będziński R; Kobielarz M; Maksymowicz K; Kuropka P; Szotek S
    J Mech Behav Biomed Mater; 2013 Feb; 18():240-52. PubMed ID: 23290820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural alteration of collagen fibres--spectroscopic and mechanical studies.
    Gąsior-Głogowska M; Komorowska M; Hanuza J; Ptak M; Kobielarz M
    Acta Bioeng Biomech; 2010; 12(4):55-62. PubMed ID: 21361257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing covariance structures in fourier transform infrared and Raman microspectroscopy spectra: a study on pork muscle fiber tissue subjected to different processing parameters.
    Böcker U; Ofstad R; Wu Z; Bertram HC; Sockalingum GD; Manfait M; Egelandsdal B; Kohler A
    Appl Spectrosc; 2007 Oct; 61(10):1032-9. PubMed ID: 17958951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy.
    Masic A; Bertinetti L; Schuetz R; Galvis L; Timofeeva N; Dunlop JW; Seto J; Hartmann MA; Fratzl P
    Biomacromolecules; 2011 Nov; 12(11):3989-96. PubMed ID: 21954830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of chemical compositions of skin calcified deposit by vibrational microspectroscopies.
    Liu MT; Cheng WT; Li MJ; Liu HN; Yang DM; Lin SY
    Arch Dermatol Res; 2005 Nov; 297(5):231-4. PubMed ID: 16231145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared Fourier transform Raman spectroscopic analysis of proteins, water and lipids in intact normal stratum corneum and psoriasis scales.
    Osada M; Gniadecka M; Wulf HC
    Exp Dermatol; 2004 Jun; 13(6):391-5. PubMed ID: 15186326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of triacylglycerols and edible oils by near-infrared Fourier transform Raman spectroscopy.
    Weng YM; Weng RH; Tzeng CY; Chen W
    Appl Spectrosc; 2003 Apr; 57(4):413-8. PubMed ID: 14658638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopic study of the mineral arsenogorceixite BaAl₃AsO₃(OH)(AsO₄,PO₄)(OH,F)₆.
    Frost RL; Xi Y; Pogson RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():301-6. PubMed ID: 22387680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopic study of pascoite Ca3V10O(28)·17H2O.
    Frost RL; Palmer SJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):248-52. PubMed ID: 21035379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers.
    Sturcová A; Davies GR; Eichhorn SJ
    Biomacromolecules; 2005; 6(2):1055-61. PubMed ID: 15762678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The borate mineral jeremejevite Al6(BO3)5(F,OH)3--a vibrational spectroscopic study.
    Frost RL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():831-6. PubMed ID: 22925911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectroscopic study of the antimony bearing mineral langbanite.
    Bahfenne S; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Feb; 75(2):710-2. PubMed ID: 20042366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of pigeon lens crystallins by near-infrared Fourier transform Raman spectroscopy.
    Chiou SH; Chen W
    Biochem Int; 1992 Nov; 28(3):401-12. PubMed ID: 1482384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational characterization of L-leucine phosphonate analogues: FT-IR, FT-Raman, and SERS spectroscopy studies and DFT calculations.
    Podstawka-Proniewicz E; Piergies N; Skołuba D; Kafarski P; Kim Y; Proniewicz LM
    J Phys Chem A; 2011 Oct; 115(40):11067-78. PubMed ID: 21888349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of mechanical strength properties of hemp fibers using near-infrared fourier transform Raman microspectroscopy.
    Peetla P; Schenzel KC; Diepenbrock W
    Appl Spectrosc; 2006 Jun; 60(6):682-91. PubMed ID: 16808870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman and infrared spectroscopy of selected vanadates.
    Frost RL; Erickson KL; Weier ML; Carmody O
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Mar; 61(5):829-34. PubMed ID: 15683785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Micro-Raman spectra for gastritis and gastric ulcer tissues].
    Wang HM; Zhang JY; Guo JY; Cai WY; Sun ZR; Wang ZG; Fang M; Sun MP; Ma SY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2038-41. PubMed ID: 18306790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio HF and DFT simulations, FT-IR and FT-Raman vibrational analysis of alpha-chlorotoluene.
    Nagabalasubramanian PB; Periandy S; Mohan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep; 77(1):150-9. PubMed ID: 20537941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma.
    Cheng WT; Liu MT; Liu HN; Lin SY
    Microsc Res Tech; 2005 Oct; 68(2):75-9. PubMed ID: 16228983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared and Raman Spectroscopic Studies of Molecular Disorders in Skin Cancer.
    Anastassopoulou J; Kyriakidou M; Malesiou E; Rallis M; Theophanides T
    In Vivo; 2019; 33(2):567-572. PubMed ID: 30804143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.