BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23290832)

  • 1. Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury.
    Thomas AM; Kubilius MB; Holland SJ; Seidlits SK; Boehler RM; Anderson AJ; Cummings BJ; Shea LD
    Biomaterials; 2013 Mar; 34(9):2213-20. PubMed ID: 23290832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple channel bridges for spinal cord injury: cellular characterization of host response.
    Yang Y; De Laporte L; Zelivyanskaya ML; Whittlesey KJ; Anderson AJ; Cummings BJ; Shea LD
    Tissue Eng Part A; 2009 Nov; 15(11):3283-95. PubMed ID: 19382871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function.
    Pawar K; Cummings BJ; Thomas A; Shea LD; Levine A; Pfaff S; Anderson AJ
    Biomaterials; 2015 Oct; 65():1-12. PubMed ID: 26134079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury.
    Tuinstra HM; Aviles MO; Shin S; Holland SJ; Zelivyanskaya ML; Fast AG; Ko SY; Margul DJ; Bartels AK; Boehler RM; Cummings BJ; Anderson AJ; Shea LD
    Biomaterials; 2012 Feb; 33(5):1618-26. PubMed ID: 22130565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term characterization of axon regeneration and matrix changes using multiple channel bridges for spinal cord regeneration.
    Tuinstra HM; Margul DJ; Goodman AG; Boehler RM; Holland SJ; Zelivyanskaya ML; Cummings BJ; Anderson AJ; Shea LD
    Tissue Eng Part A; 2014 Mar; 20(5-6):1027-37. PubMed ID: 24168314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury.
    Sun X; Bai Y; Zhai H; Liu S; Zhang C; Xu Y; Zou J; Wang T; Chen S; Zhu Q; Liu X; Mao H; Quan D
    Acta Biomater; 2019 Mar; 86():194-206. PubMed ID: 30586646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-automated counting of axon regeneration in poly(lactide co-glycolide) spinal cord bridges.
    McCreedy DA; Margul DJ; Seidlits SK; Antane JT; Thomas RJ; Sissman GM; Boehler RM; Smith DR; Goldsmith SW; Kukushliev TV; Lamano JB; Vedia BH; He T; Shea LD
    J Neurosci Methods; 2016 Apr; 263():15-22. PubMed ID: 26820904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aligned hydrogel tubes guide regeneration following spinal cord injury.
    Dumont CM; Carlson MA; Munsell MK; Ciciriello AJ; Strnadova K; Park J; Cummings BJ; Anderson AJ; Shea LD
    Acta Biomater; 2019 Mar; 86():312-322. PubMed ID: 30610918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility study on mouse live imaging after spinal cord injury and poly(lactide-co-glycolide) bridge implantation.
    Anzalone A; Chacko JV; Nishi RA; Dumont C; Smith D; Shea LD; Digman MA; Cummings BJ; Anderson AJ
    J Biomed Opt; 2018 Jun; 23(6):1-6. PubMed ID: 29959835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury.
    Koffler J; Samara RF; Rosenzweig ES
    Methods Mol Biol; 2014; 1162():157-65. PubMed ID: 24838966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycistronic Delivery of IL-10 and NT-3 Promotes Oligodendrocyte Myelination and Functional Recovery in a Mouse Spinal Cord Injury Model.
    Smith DR; Dumont CM; Park J; Ciciriello AJ; Guo A; Tatineni R; Cummings BJ; Anderson AJ; Shea LD
    Tissue Eng Part A; 2020 Jun; 26(11-12):672-682. PubMed ID: 32000627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord.
    Madigan NN; Chen BK; Knight AM; Rooney GE; Sweeney E; Kinnavane L; Yaszemski MJ; Dockery P; O'Brien T; McMahon SS; Windebank AJ
    Tissue Eng Part A; 2014 Nov; 20(21-22):2985-97. PubMed ID: 24854680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds.
    Gros T; Sakamoto JS; Blesch A; Havton LA; Tuszynski MH
    Biomaterials; 2010 Sep; 31(26):6719-29. PubMed ID: 20619785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury.
    De Laporte L; des Rieux A; Tuinstra HM; Zelivyanskaya ML; De Clerck NM; Postnov AA; Préat V; Shea LD
    J Biomed Mater Res A; 2011 Sep; 98(3):372-82. PubMed ID: 21630429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury.
    Nomura H; Baladie B; Katayama Y; Morshead CM; Shoichet MS; Tator CH
    Neurosurgery; 2008 Jul; 63(1):127-41; discussion 141-3. PubMed ID: 18728578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of growth factors and soluble Nogo-66 receptor protein on transplanted neural stem/progenitor survival and axonal regeneration after complete transection of rat spinal cord.
    Guo X; Zahir T; Mothe A; Shoichet MS; Morshead CM; Katayama Y; Tator CH
    Cell Transplant; 2012; 21(6):1177-97. PubMed ID: 22236767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair.
    Kubinová Š; Horák D; Hejčl A; Plichta Z; Kotek J; Proks V; Forostyak S; Syková E
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1298-309. PubMed ID: 23401421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple-channel scaffolds to promote spinal cord axon regeneration.
    Moore MJ; Friedman JA; Lewellyn EB; Mantila SM; Krych AJ; Ameenuddin S; Knight AM; Lu L; Currier BL; Spinner RJ; Marsh RW; Windebank AJ; Yaszemski MJ
    Biomaterials; 2006 Jan; 27(3):419-29. PubMed ID: 16137759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.