These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2329091)

  • 1. Evoked otoacoustic emissions in guinea pig: basic characteristics.
    Avan P; Loth D; Menguy C; Teyssou M
    Hear Res; 1990 Mar; 44(2-3):151-60. PubMed ID: 2329091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects.
    Williams EA; Brookes GB; Prasher DK
    Acta Otolaryngol; 1994 Mar; 114(2):121-9. PubMed ID: 8203191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental research on delayed responses in cochlear microphonics records in guinea pigs].
    Maseki M
    Nihon Jibiinkoka Gakkai Kaiho; 1996 Jan; 99(1):79-90. PubMed ID: 8822257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig.
    Stronks HC; Versnel H; Prijs VF; Klis SF
    Hear Res; 2010 Jan; 259(1-2):64-74. PubMed ID: 19840841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear delays measured with amplitude-modulated tone-burst-evoked OAEs.
    Goodman SS; Withnell RH; De Boer E; Lilly DJ; Nuttall AL
    Hear Res; 2004 Feb; 188(1-2):57-69. PubMed ID: 14759571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of sources of distortion product otoacoustic emissions by onset-decomposition.
    Vetesník A; Turcanu D; Dalhoff E; Gummer AW
    Hear Res; 2009 Oct; 256(1-2):21-38. PubMed ID: 19523509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig.
    Avan P; Bonfils P; Loth D; Elbez M; Erminy M
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3012-20. PubMed ID: 7759641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables.
    Veuillet E; Collet L; Duclaux R
    J Neurophysiol; 1991 Mar; 65(3):724-35. PubMed ID: 2051201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Evoked otoacoustic emissions from normal-hearing young Chinese].
    Shi Y
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1989; 24(6):349-51, 385. PubMed ID: 2485462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency otoacoustic emissions in schoolchildren measured by two commercial devices.
    Jedrzejczak WW; Piotrowska A; Kochanek K; Sliwa L; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Oct; 77(10):1724-8. PubMed ID: 23972827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of auditory percepts by transcutaneous electrical stimulation.
    Ueberfuhr MA; Braun A; Wiegrebe L; Grothe B; Drexl M
    Hear Res; 2017 Jul; 350():235-243. PubMed ID: 28323018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a concha electrode to measure response patterns based on the amplitudes of cochlear microphonic waveforms across acoustic frequencies in normal-hearing subjects.
    Zhang M
    Ear Hear; 2015 Jan; 36(1):53-60. PubMed ID: 25083598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Otoacoustic emissions measured with a physically open recording system.
    Withnell RH; Kirk DL; Yates GK
    J Acoust Soc Am; 1998 Jul; 104(1):350-5. PubMed ID: 9670528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of aging on evoked otoacoustic emissions and efferent suppression of transient evoked otoacoustic emissions.
    Keppler H; Dhooge I; Corthals P; Maes L; D'haenens W; Bockstael A; Philips B; Swinnen F; Vinck B
    Clin Neurophysiol; 2010 Mar; 121(3):359-65. PubMed ID: 20005159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of interstimulus interval on evoked otoacoustic emissions.
    Lina-Granade G; Collet L
    Hear Res; 1995 Jul; 87(1-2):55-61. PubMed ID: 8567443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between evoked otoacoustic emissions and middle-ear dynamic characteristics.
    Wada H; Ohyama K; Kobayashi T; Sunaga N; Koike T
    Audiology; 1993; 32(5):282-92. PubMed ID: 8216027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.