These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 2329098)

  • 81. Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons.
    Spirou GA; Brownell WE; Zidanic M
    J Neurophysiol; 1990 May; 63(5):1169-90. PubMed ID: 2358868
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Inhibition shapes acoustic responsiveness in spherical bushy cells.
    Keine C; Rübsamen R
    J Neurosci; 2015 Jun; 35(22):8579-92. PubMed ID: 26041924
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Spectral characteristics of the responses of primary auditory-nerve fibers to amplitude-modulated signals.
    Khanna SM; Teich MC
    Hear Res; 1989 May; 39(1-2):143-57. PubMed ID: 2737961
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Transmission of phase-coupling accuracy from the auditory nerve to spherical bushy cells in the Mongolian gerbil.
    Dehmel S; Kopp-Scheinpflug C; Weick M; Dörrscheidt GJ; Rübsamen R
    Hear Res; 2010 Sep; 268(1-2):234-49. PubMed ID: 20561574
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Neural representation of the acoustic biotope. A comparison of the response of auditory neurons to tonal and natural stimuli in the cat.
    Smolders JW; Aertsen AM; Johannesma PI
    Biol Cybern; 1979 Nov; 35(1):11-20. PubMed ID: 508847
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Subcortical neural coding mechanisms for auditory temporal processing.
    Frisina RD
    Hear Res; 2001 Aug; 158(1-2):1-27. PubMed ID: 11506933
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Auditory nerve and brain stem responses to sound stimuli at various frequencies.
    Brama I; Sohmer H
    Audiology; 1977; 16(5):402-8. PubMed ID: 901294
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.
    Greenberg S; Geisler CD; Deng L
    J Acoust Soc Am; 1986 Apr; 79(4):1010-9. PubMed ID: 3700856
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Dorsal column input to cochlear neurons in decerebrate-decerebellate cats.
    Saadé NE; Frangieh AS; Atweh SF; Jabbur SJ
    Brain Res; 1989 May; 486(2):399-402. PubMed ID: 2731042
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Dynamic properties of excitation and inhibition in the cochlear nucleus.
    Møller AR
    Acta Physiol Scand; 1975 Apr; 93(4):442-54. PubMed ID: 1155136
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Auditory response properties in the superior paraolivary nucleus of the gerbil.
    Behrend O; Brand A; Kapfer C; Grothe B
    J Neurophysiol; 2002 Jun; 87(6):2915-28. PubMed ID: 12037195
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Rapid and short-term adaptation in auditory nerve responses.
    Westerman LA; Smith RL
    Hear Res; 1984 Sep; 15(3):249-60. PubMed ID: 6501113
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Auditory nerve neurophonic recorded from the round window of the Mongolian gerbil.
    Henry KR
    Hear Res; 1995 Oct; 90(1-2):176-84. PubMed ID: 8974995
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Response modulation of auditory-nerve fibers by AM stimuli: effects of average intensity.
    Smith RL; Brachman ML
    Hear Res; 1980 Mar; 2(2):123-33. PubMed ID: 7364668
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Tone and call responses of units in the auditory nerve and dorsal medullary nucleus of Xenopus laevis.
    Elliott TM; Christensen-Dalsgaard J; Kelley DB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Dec; 193(12):1243-57. PubMed ID: 17989982
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Amplitude enhancement is seen in the cochlear nerve but not at, or before, the afferent synapse.
    Henry KR; Price JM
    Hear Res; 1994 Sep; 79(1-2):190-6. PubMed ID: 7806482
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Coding of time-varying sounds in the cochlear nucleus.
    Møller AR
    Audiology; 1978; 17(5):446-68. PubMed ID: 697654
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Enhancement of the cochlear nerve compound action potential: sharply defined frequency-intensity domains bordering the tuning curve.
    Henry KR
    Hear Res; 1991 Nov; 56(1-2):239-45. PubMed ID: 1769917
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Mode-locked spike trains in responses of ventral cochlear nucleus chopper and onset neurons to periodic stimuli.
    Laudanski J; Coombes S; Palmer AR; Sumner CJ
    J Neurophysiol; 2010 Mar; 103(3):1226-37. PubMed ID: 20042702
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Development of the VIIIth nerve compound action potential evoked by low-intensity tone pips in the Mongolian gerbil.
    Huang JM; Berlin CI; Cullen JK; Wickremasinghe AR
    Hear Res; 1995 Aug; 88(1-2):14-8. PubMed ID: 8575989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.