These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23290993)

  • 1. Improvement of (R)-1,3-butanediol production by engineered Escherichia coli.
    Kataoka N; Vangnai AS; Tajima T; Nakashimada Y; Kato J
    J Biosci Bioeng; 2013 May; 115(5):475-80. PubMed ID: 23290993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH.
    Kataoka N; Vangnai AS; Ueda H; Tajima T; Nakashimada Y; Kato J
    Biosci Biotechnol Biochem; 2014; 78(4):695-700. PubMed ID: 25036969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol.
    Ji XJ; Liu LG; Shen MQ; Nie ZK; Tong YJ; Huang H
    Biotechnol Bioeng; 2015 May; 112(5):1056-9. PubMed ID: 25450449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production.
    Tong YJ; Ji XJ; Shen MQ; Liu LG; Nie ZK; Huang H
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):637-47. PubMed ID: 26428232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.
    Kay JE; Jewett MC
    Metab Eng; 2015 Nov; 32():133-142. PubMed ID: 26428449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol.
    Xu Y; Chu H; Gao C; Tao F; Zhou Z; Li K; Li L; Ma C; Xu P
    Metab Eng; 2014 May; 23():22-33. PubMed ID: 24525331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli.
    Lee S; Kim B; Park K; Um Y; Lee J
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering of
    Liu Y; Cen X; Liu D; Chen Z
    ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis.
    Erian AM; Gibisch M; Pflügl S
    Microb Cell Fact; 2018 Nov; 17(1):190. PubMed ID: 30501633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli.
    Miklóssy I; Bodor Z; Sinkler R; Orbán KC; Lányi S; Albert B
    J Biomol Struct Dyn; 2017 Jul; 35(9):1874-1889. PubMed ID: 27492654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli.
    Mazumdar S; Lee J; Oh MK
    Bioresour Technol; 2013 May; 136():329-36. PubMed ID: 23567699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli.
    Li L; Wang Y; Zhang L; Ma C; Wang A; Tao F; Xu P
    Bioresour Technol; 2012 Jul; 115():111-6. PubMed ID: 21937220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol.
    Kou M; Cui Z; Fu J; Dai W; Wang Z; Chen T
    Microb Cell Fact; 2022 Jul; 21(1):150. PubMed ID: 35879766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of
    Qin N; Zhu F; Liu Y; Liu D; Chen Z
    ACS Synth Biol; 2024 Jan; 13(1):351-357. PubMed ID: 38110368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.
    Yim H; Haselbeck R; Niu W; Pujol-Baxley C; Burgard A; Boldt J; Khandurina J; Trawick JD; Osterhout RE; Stephen R; Estadilla J; Teisan S; Schreyer HB; Andrae S; Yang TH; Lee SY; Burk MJ; Van Dien S
    Nat Chem Biol; 2011 May; 7(7):445-52. PubMed ID: 21602812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological production of 2-butanone in Escherichia coli.
    Yoneda H; Tantillo DJ; Atsumi S
    ChemSusChem; 2014 Jan; 7(1):92-5. PubMed ID: 24193695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. R-acetoin accumulation and dissimilation in Klebsiella pneumoniae.
    Wang D; Zhou J; Chen C; Wei D; Shi J; Jiang B; Liu P; Hao J
    J Ind Microbiol Biotechnol; 2015 Aug; 42(8):1105-15. PubMed ID: 26059458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production.
    Heyman B; Lamm R; Tulke H; Regestein L; Büchs J
    Microb Cell Fact; 2019 May; 18(1):78. PubMed ID: 31053124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production.
    Li H; Zhang G; Dang Y
    Bioengineered; 2016 Nov; 7(6):432-438. PubMed ID: 27442598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.
    de Oliveira RR; Nicholson WL
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):719-28. PubMed ID: 26454865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.