These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2329113)

  • 21. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings.
    Wang J; de Boer J; de Groot K
    J Biomed Mater Res A; 2009 Sep; 90(3):664-70. PubMed ID: 18563812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monoclonal antibodies as tools for studying the osteoblast lineage.
    Aubin JE; Turksen K
    Microsc Res Tech; 1996 Feb; 33(2):128-40. PubMed ID: 8845513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of calcium-phosphate-based materials on proliferation and alkaline phosphatase activity of newborn rat periosteal cells in vitro.
    Teti A; Tarquilio A; Grano M; Colucci S; Laforgia A; Mangini F; Zambonin Zallone A
    J Dent Res; 1991 Jun; 70(6):997-1001. PubMed ID: 1646245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of bone-related genes expression by bone-like apatite in MC3T3-E1 cells.
    Tan YF; Hong SF; Wang XL; Lu J; Wang H; Zhang XD
    J Mater Sci Mater Med; 2007 Nov; 18(11):2237-41. PubMed ID: 17597361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of cytolytic neutrophil activation in vitro by amorphous hydrated calcium phosphate as a model of biomaterial inflammation.
    Edwards FC; Taheri A; Dann SC; Dye JF
    J Biomed Mater Res A; 2011 Mar; 96(3):552-65. PubMed ID: 21254387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osteoblast interactions with various hydroxyapatite based biomaterials consolidated using a spark plasma sintering technique.
    Xu JL; Khor KA; Lu YW; Chen WN; Kumar R
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):224-30. PubMed ID: 17631676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinformatics-based selection of a model cell type for in vitro biomaterial testing.
    Groen N; van de Peppel J; Yuan H; van Leeuwen JP; van Blitterswijk CA; de Boer J
    Biomaterials; 2013 Jul; 34(22):5552-61. PubMed ID: 23632322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: an ultrastructural comparison of three types of biomaterials.
    Serre CM; Papillard M; Chavassieux P; Boivin G
    Biomaterials; 1993; 14(2):97-106. PubMed ID: 8382091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of biodegradable beta-whitlockite ceramics with bone tissue: an in vivo study.
    Klein CP; de Groot K; Driessen AA; van der Lubbe HB
    Biomaterials; 1985 May; 6(3):189-92. PubMed ID: 4005363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of hydroxyapatite particle size on bone cell activities: an in vitro study.
    Sun JS; Liu HC; Chang WH; Li J; Lin FH; Tai HC
    J Biomed Mater Res; 1998 Mar; 39(3):390-7. PubMed ID: 9468047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study of bone proteins which can prevent hydroxyapatite formation.
    Menanteau J; Neuman WF; Neuman MW
    Metab Bone Dis Relat Res; 1982; 4(2):157-62. PubMed ID: 6292656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular responses to metal ions released from implants.
    Kardos TB
    J Oral Implantol; 2014 Jun; 40(3):294-8. PubMed ID: 24914916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydroxyapatite biomaterial implanted in human periodontal defects: an histological and ultrastructural study.
    Orly I; Kerebel B; Abjean J; Heughebaert M; Barbieux I
    Bull Group Int Rech Sci Stomatol Odontol; 1989 Jun; 32(2):79-86. PubMed ID: 2765689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Summary of the National Conference on Challenges in Biomaterials Research jointly organized by VIT and CSIR-CECRI.
    Manivasagam G; Subramanian B; Webster TJ
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):1-5. PubMed ID: 26491302
    [No Abstract]   [Full Text] [Related]  

  • 35. Structural and functional macrophages alterations by ceramics of different composition.
    Bosetti M; Ottani V; Kozel D; Raspanti M; De Pasquale V; Ruggeri A; Cannas M
    Biomaterials; 1999 Feb; 20(4):363-70. PubMed ID: 10048409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical changes in hydroxyapatite biomaterial under in vivo and in vitro biological conditions.
    Orly I; Gregoire M; Menanteau J; Heughebaert M; Kerebel B
    Calcif Tissue Int; 1989 Jul; 45(1):20-6. PubMed ID: 2504459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mechanisms on carbonate, phosphate, and silica deposition in the living cell.
    Degens ET
    Top Curr Chem; 1976; 64():1-112. PubMed ID: 180632
    [No Abstract]   [Full Text] [Related]  

  • 38. Mechanisms of DNA entry into mammalian cells. II. Phagocytosis of calcium phosphate DNA co-precipitate visualized by electron microscopy.
    Loyter A; Scangos G; Juricek D; Keene D; Ruddle FH
    Exp Cell Res; 1982 May; 139(1):223-34. PubMed ID: 7084316
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of deproteination on bone mineral morphology: implications for biomaterials and aging.
    Carter DH; Scully AJ; Heaton DA; Young MP; Aaron JE
    Bone; 2002 Sep; 31(3):389-95. PubMed ID: 12231411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between bone cells and biomaterials: An update.
    Beauvais S; Drevelle O; Jann J; Lauzon MA; Foruzanmehr M; Grenier G; Roux S; Faucheux N
    Front Biosci (Schol Ed); 2016 Jun; 8(2):227-63. PubMed ID: 27100704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.