These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 2329114)

  • 1. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices.
    Ritchie RO; Dauskardt RH; Pennisi FJ
    J Biomed Mater Res; 1992 Jan; 26(1):69-76. PubMed ID: 1577836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.
    Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S32-49. PubMed ID: 8794031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and accurate fracture toughness testing methods for pyrolytic carbon/graphite composites used in heart-valve prostheses.
    Kruzic JJ; Kuskowski SJ; Ritchie RO
    J Biomed Mater Res A; 2005 Sep; 74(3):461-4. PubMed ID: 15973730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of indentation tests on pyrolytic carbon.
    Gilpin CB; Haubold AD; Ely JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S72-8. PubMed ID: 8794040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small crack in life prediction.
    Lankford J; Sines G
    J Biomed Mater Res; 1995 May; 29(5):673-8. PubMed ID: 7503863
    [No Abstract]   [Full Text] [Related]  

  • 8. Unalloyed pyrolytic carbon for implanted mechanical heart valves.
    Ma L; Sines GH
    J Heart Valve Dis; 1999 Sep; 8(5):578-85. PubMed ID: 10517402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue of isotropic pyrolytic carbon used in mechanical heart valves.
    Ma L; Sines G
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S59-64. PubMed ID: 8794033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolytic carbon indentation crack morphology.
    Ely JL; Stupka J; Haubold AD
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S65-71. PubMed ID: 8794035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural integrity assessment of heart valve prostheses: a damage tolerance analysis of the CarboMedics Prosthetic Heart Valve.
    Ryder JK; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S86-96. PubMed ID: 8803760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue and fracture of pyrolytic carbon: a damage- tolerant approach to structural integrity and life prediction in "ceramic" heart valve prostheses.
    Ritchie RO
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S9-31. PubMed ID: 8794026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of repetitive impact on the mechanical strength of pyrolytic carbon.
    Kepner J; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S50-8. PubMed ID: 8794027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of moisture absorption on the fatigue crack propagation resistance of acrylic bone cement.
    Schmitt S; Krzypow DJ; Rimnac CM
    Biomed Tech (Berl); 2004 Mar; 49(3):61-5. PubMed ID: 15106900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture toughness of single crystal alumina in air and a simulated body environment.
    Mitamura Y; Wang Y
    J Biomed Mater Res; 1994 Jul; 28(7):813-7. PubMed ID: 8083249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of fatigue crack growth in resin composite, dentin and the interface.
    Soappman MJ; Nazari A; Porter JA; Arola D
    Dent Mater; 2007 May; 23(5):608-14. PubMed ID: 16806452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of PMMA bone cement fixation: fracture and fatigue crack-growth behaviour.
    Nguyen NC; Maloney WJ; Dauskardt RH
    J Mater Sci Mater Med; 1997 Aug; 8(8):473-83. PubMed ID: 15348713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue failure in polysilicon not due to simple stress corrosion cracking.
    Kahn H; Ballarini R; Bellante JJ; Heuer AH
    Science; 2002 Nov; 298(5596):1215-8. PubMed ID: 12425330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.