These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 2329114)

  • 21. In vitro fatigue behavior of human dentin with implications for life prediction.
    Nalla RK; Imbeni V; Kinney JH; Staninec M; Marshall SJ; Ritchie RO
    J Biomed Mater Res A; 2003 Jul; 66(1):10-20. PubMed ID: 12833426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.
    Connelly GM; Rimnac CM; Wright TM; Hertzberg RW; Manson JA
    J Orthop Res; 1984; 2(2):119-25. PubMed ID: 6491807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclic fatigue-crack propagation in sapphire in air and simulated physiological environments.
    Asoo B; McNaney JM; Mitamura Y; Ritchie RO
    J Biomed Mater Res; 2000 Dec; 52(3):488-91. PubMed ID: 11007616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical cardiac valve prostheses: wear characteristics and magnitudes in three bileaflet valves.
    Elizondo DR; Boland ED; Ambrus JR; Kurk JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S115-23; discussion 144-8. PubMed ID: 8803764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immobilization of heparin oligosaccharides onto radiofrequency plasma modified pyrolytic carbon-coated graphite.
    Yuan S; Cai W; Szakalas-Gratzl G; Kottke-Marchant K; Tweden K; Marchant RE
    J Appl Biomater; 1995; 6(4):259-66. PubMed ID: 8589511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue behavior of resin composites in aqueous environments.
    Takeshige F; Kawakami Y; Hayashi M; Ebisu S
    Dent Mater; 2007 Jul; 23(7):893-9. PubMed ID: 17007919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro fracture toughness of human dentin.
    Imbeni V; Nalla RK; Bosi C; Kinney JH; Ritchie RO
    J Biomed Mater Res A; 2003 Jul; 66(1):1-9. PubMed ID: 12833425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.
    Gencur SJ; Rimnac CM; Kurtz SM
    Biomaterials; 2006 Mar; 27(8):1550-7. PubMed ID: 16303175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigations of subcritical crack propagation of the Empress 2 all-ceramic system.
    Mitov G; Lohbauer U; Rabbo MA; Petschelt A; Pospiech P
    Dent Mater; 2008 Feb; 24(2):267-73. PubMed ID: 17631955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic aspects of in vitro fatigue-crack growth in dentin.
    Kruzic JJ; Nalla RK; Kinney JH; Ritchie RO
    Biomaterials; 2005 Apr; 26(10):1195-204. PubMed ID: 15451639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pure pyrolytic carbon: preparation and properties of a new material, On-X carbon for mechanical heart valve prostheses.
    Ely JL; Emken MR; Accuntius JA; Wilde DS; Haubold AD; More RB; Bokros JC
    J Heart Valve Dis; 1998 Nov; 7(6):626-32. PubMed ID: 9870196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Material properties, biocompatibility, and wear resistance of the Medtronic pyrolytic carbon.
    Leuer LH; Gross JM; Johnson KM
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S105-9; discussion 110. PubMed ID: 8803762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fundamental mechanisms of fatigue and fracture.
    Christ HJ
    Stud Health Technol Inform; 2008; 133():56-67. PubMed ID: 18376013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fracture mechanics principles applied to implant medical devices--a review.
    Chwirut DJ; Regnault WF
    Med Prog Technol; 1988-1989; 14(3-4):193-203. PubMed ID: 2978592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of test protocol variables for dental implant fatigue research.
    Lee CK; Karl M; Kelly JR
    Dent Mater; 2009 Nov; 25(11):1419-25. PubMed ID: 19646746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status.
    Hwang NH
    J Heart Valve Dis; 1998 Mar; 7(2):140-50. PubMed ID: 9587853
    [No Abstract]   [Full Text] [Related]  

  • 39. Structural failure of pyrolytic carbon heart valves.
    Richard G; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S79-85. PubMed ID: 8803759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.