BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23291231)

  • 1. Are plants useful as accumulation indicators of metal bioavailability?
    Remon E; Bouchardon JL; Le Guédard M; Bessoule JJ; Conord C; Faure O
    Environ Pollut; 2013 Apr; 175():1-7. PubMed ID: 23291231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A geochemical study of toxic metal translocation in an urban brownfield wetland.
    Qian Y; Gallagher FJ; Feng H; Wu M
    Environ Pollut; 2012 Jul; 166():23-30. PubMed ID: 22459711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts.
    Black A; McLaren RG; Reichman SM; Speir TW; Condron LM
    Environ Pollut; 2011 Jun; 159(6):1523-35. PubMed ID: 21444134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil-plant metal transfer predictions in contaminated lands.
    Kubová J; Matús P; Bujdos M; Hagarová I; Medved' J
    Talanta; 2008 May; 75(4):1110-22. PubMed ID: 18585191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil.
    Méndez A; Gómez A; Paz-Ferreiro J; Gascó G
    Chemosphere; 2012 Nov; 89(11):1354-9. PubMed ID: 22732302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and accumulation of metals in soils and plant from a lead-zinc mineland in Guangxi, South China.
    Wang Y; Zhan M; Zhu H; Guo S; Wang W; Xue B
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):198-203. PubMed ID: 22105935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability of heavy metals from polluted soils to plants.
    Chojnacka K; Chojnacki A; Górecka H; Górecki H
    Sci Total Environ; 2005 Jan; 337(1-3):175-82. PubMed ID: 15626388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicorrelation models and uptake factors to estimate extractable metal concentrations from soil and metal in plants in pasturelands fertilized with manure.
    Lopes C; Herva M; Franco-Uría A; Roca E
    Environ Pollut; 2012 Jul; 166():17-22. PubMed ID: 22459710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area.
    Komárek M; Chrastný V; Stíchová J
    Environ Int; 2007 Jul; 33(5):677-84. PubMed ID: 17346793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil.
    Gupta AK; Sinha S
    J Hazard Mater; 2007 Oct; 149(1):144-50. PubMed ID: 17475401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of two chelating agents (EDTA and DTPA) on the autochthonous vegetation of a soil polluted with Cu, Zn and Cd.
    Pastor J; Aparicio AM; Gutierrez-Maroto A; Hernández AJ
    Sci Total Environ; 2007 May; 378(1-2):114-8. PubMed ID: 17307245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of soil chemistry on metal and bioessential element concentrations in nymphal and adult periodical cicadas (Magicicada spp.).
    Robinson GR; Sibrell PL; Boughton CJ; Yang LH
    Sci Total Environ; 2007 Mar; 374(2-3):367-78. PubMed ID: 17258290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract.
    Intawongse M; Dean JR
    Food Addit Contam; 2006 Jan; 23(1):36-48. PubMed ID: 16393813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution.
    Kosior G; Samecka-Cymerman A; Kolon K; Kempers AJ
    Chemosphere; 2010 Sep; 81(3):321-6. PubMed ID: 20696462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal uptake by woodlice in urban soils.
    Gál J; Markiewicz-Patkowska J; Hursthouse A; Tatner P
    Ecotoxicol Environ Saf; 2008 Jan; 69(1):139-49. PubMed ID: 17321593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Date palm (Phoenix dactylifera L.) leaves as biomonitors of atmospheric metal pollution in arid and semi-arid environments.
    Al-Khashman OA; Al-Muhtaseb AH; Ibrahim KA
    Environ Pollut; 2011 Jun; 159(6):1635-40. PubMed ID: 21421278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition and solubility of airborne metals to four plant species grown at varying distances from two heavily trafficked roads in London.
    Peachey CJ; Sinnett D; Wilkinson M; Morgan GW; Freer-Smith PH; Hutchings TR
    Environ Pollut; 2009; 157(8-9):2291-9. PubMed ID: 19410342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.