BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 2329125)

  • 1. Selective electrical stimulation of postganglionic cerebrovascular parasympathetic nerve fibers originating from the sphenopalatine ganglion enhances cortical blood flow in the rat.
    Suzuki N; Hardebo JE; Kåhrström J; Owman C
    J Cereb Blood Flow Metab; 1990 May; 10(3):383-91. PubMed ID: 2329125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect on cortical blood flow of electrical stimulation of trigeminal cerebrovascular nerve fibres in the rat.
    Suzuki N; Hardebo JE; Kåhrström J; Owman C
    Acta Physiol Scand; 1990 Mar; 138(3):307-16. PubMed ID: 2327261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat.
    Seylaz J; Hara H; Pinard E; Mraovitch S; MacKenzie ET; Edvinsson L
    J Cereb Blood Flow Metab; 1988 Dec; 8(6):875-8. PubMed ID: 3192652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for in vivo cerebrovascular neurogenic vasodilatation in the rat.
    Suzuki N; Gotoh F; Gotoh J; Koto A
    Clin Auton Res; 1991 Mar; 1(1):23-6. PubMed ID: 1821661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cerebrovascular parasympathetic innervation.
    Suzuki N; Hardebo JE
    Cerebrovasc Brain Metab Rev; 1993; 5(1):33-46. PubMed ID: 8452761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of capsaicin and nitric oxide synthase inhibitor on increase in cerebral blood flow induced by sensory and parasympathetic nerve stimulation in the rat.
    Ayajiki K; Fujioka H; Shinozaki K; Okamura T
    J Appl Physiol (1985); 2005 May; 98(5):1792-8. PubMed ID: 15626754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma protein extravasation induced in the rat dura mater by stimulation of the parasympathetic sphenopalatine ganglion.
    Delépine L; Aubineau P
    Exp Neurol; 1997 Oct; 147(2):389-400. PubMed ID: 9344563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of nitric oxide synthase attenuates the cerebral blood flow response to stimulation of postganglionic parasympathetic nerves in the rat.
    Morita-Tsuzuki Y; Hardebo JE; Bouskela E
    J Cereb Blood Flow Metab; 1993 Nov; 13(6):993-7. PubMed ID: 7691856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins and pathways of cerebrovascular vasoactive intestinal polypeptide-positive nerves in rat.
    Suzuki N; Hardebo JE; Owman C
    J Cereb Blood Flow Metab; 1988 Oct; 8(5):697-712. PubMed ID: 3417797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cortical blood flow by the dorsal raphe nucleus: topographic organization of cerebrovascular regulatory regions.
    Underwood MD; Bakalian MJ; Arango V; Smith RW; Mann JJ
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):664-73. PubMed ID: 1618944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide Y co-exists with vasoactive intestinal polypeptide and acetylcholine in parasympathetic cerebrovascular nerves originating in the sphenopalatine, otic, and internal carotid ganglia of the rat.
    Suzuki N; Hardebo JE; Kåhrström J; Owman C
    Neuroscience; 1990; 36(2):507-19. PubMed ID: 2215932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of the electrical stimulation of the nasal mucosa on cortical cerebral blood flow in rabbits.
    Gürelik M; Karadağ O; Polat S; Ozüm U; Aslan A; Gürelik B; Göksel HM
    Neurosci Lett; 2004 Jul; 365(3):210-3. PubMed ID: 15246550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preganglionic and postganglionic neurons responsible for cerebral vasodilation mediated by nitric oxide in anesthetized dogs.
    Toda N; Ayajiki K; Tanaka T; Okamura T
    J Cereb Blood Flow Metab; 2000 Apr; 20(4):700-8. PubMed ID: 10779014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic parasympathetic sectioning decreases regional cerebral blood flow during hemorrhagic hypotension and increases infarct size after middle cerebral artery occlusion in spontaneously hypertensive rats.
    Koketsu N; Moskowitz MA; Kontos HA; Yokota M; Shimizu T
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):613-20. PubMed ID: 1618940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heptyl-physostigmine enhances basal forebrain control of cortical cerebral blood flow.
    Linville DG; Giacobini E; Arnerić SP
    J Neurosci Res; 1992 Mar; 31(3):573-7. PubMed ID: 1640506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous monitoring of cerebrocortical blood flow during stimulation of the cerebellar fastigial nucleus: a study by laser-Doppler flowmetry.
    Iadecola C; Reis DJ
    J Cereb Blood Flow Metab; 1990 Sep; 10(5):608-17. PubMed ID: 2117016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parasympathetic vasodilator fibers in rat digastric muscle.
    Sudo E; Ishii H; Niioka T; Hirai T; Izumi H
    Brain Res; 2009 Dec; 1302():125-31. PubMed ID: 19765558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries.
    Nozaki K; Moskowitz MA; Maynard KI; Koketsu N; Dawson TM; Bredt DS; Snyder SH
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):70-9. PubMed ID: 7678014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Control of blood flow in nasal mucosa by electro-stimulation of sphenopalatine ganglion].
    Zheng C; Wang Z
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Jun; 32(3):163-6. PubMed ID: 10743157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parasympathetic denervation of rat pial vessels significantly increases infarction volume following middle cerebral artery occlusion.
    Kano M; Moskowitz MA; Yokota M
    J Cereb Blood Flow Metab; 1991 Jul; 11(4):628-37. PubMed ID: 2050751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.