These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 23291491)
1. Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young's modulus gradient. Callahan LA; Ganios AM; Childers EP; Weiner SD; Becker ML Acta Biomater; 2013 Apr; 9(4):6095-104. PubMed ID: 23291491 [TBL] [Abstract][Full Text] [Related]
2. Maximizing phenotype constraint and extracellular matrix production in primary human chondrocytes using arginine-glycine-aspartate concentration gradient hydrogels. Smith Callahan LA; Childers EP; Bernard SL; Weiner SD; Becker ML Acta Biomater; 2013 Jul; 9(7):7420-8. PubMed ID: 23567942 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Wang J; Zhang F; Tsang WP; Wan C; Wu C Biomaterials; 2017 Mar; 120():11-21. PubMed ID: 28024231 [TBL] [Abstract][Full Text] [Related]
4. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Villanueva I; Weigel CA; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2832-46. PubMed ID: 19508905 [TBL] [Abstract][Full Text] [Related]
5. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization. Chahine NO; Collette NM; Thomas CB; Genetos DC; Loots GG Tissue Eng Part A; 2014 Sep; 20(17-18):2305-15. PubMed ID: 24593020 [TBL] [Abstract][Full Text] [Related]
6. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Zhang J; Mujeeb A; Du Y; Lin J; Ge Z Biomed Mater; 2015 Jun; 10(3):035016. PubMed ID: 26107534 [TBL] [Abstract][Full Text] [Related]
7. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3. Schneider MC; Chu S; Randolph MA; Bryant SJ Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256 [TBL] [Abstract][Full Text] [Related]
8. Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (β-hydroxybutyrate-co-β-hydroxyvalerate) microspheres for cartilage regeneration. Li C; Zhang J; Li Y; Moran S; Khang G; Ge Z Biomed Mater; 2013 Apr; 8(2):025005. PubMed ID: 23385654 [TBL] [Abstract][Full Text] [Related]
9. Protease-Sensitive Hydrogel Biomaterials with Tunable Modulus and Adhesion Ligand Gradients for 3D Vascular Sprouting. He YJ; Young DA; Mededovic M; Li K; Li C; Tichauer K; Venerus D; Papavasiliou G Biomacromolecules; 2018 Nov; 19(11):4168-4181. PubMed ID: 30253093 [TBL] [Abstract][Full Text] [Related]
10. Femtosecond Laser Maskless Optical Projection Lithography of Cartilage PCM Inspired 3D Protein Matrix to Chondrocyte Phenotype. Li T; Liu J; Guo M; Bin FC; Duan Q; Dong XZ; Jin F; Fujita K; Zheng ML Adv Healthc Mater; 2024 Sep; 13(23):e2400849. PubMed ID: 38687974 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression. Nebelung S; Gavenis K; Lüring C; Zhou B; Mueller-Rath R; Stoffel M; Tingart M; Rath B Ann Anat; 2012 Jul; 194(4):351-8. PubMed ID: 22429869 [TBL] [Abstract][Full Text] [Related]
13. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering. Neumann AJ; Quinn T; Bryant SJ Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026 [TBL] [Abstract][Full Text] [Related]
14. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Liu J; Song H; Zhang L; Xu H; Zhao X Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605 [TBL] [Abstract][Full Text] [Related]
15. Influence of the scaffold geometry on the spatial and temporal evolution of the mechanical properties of tissue-engineered cartilage: insights from a mathematical model. Bandeiras C; Completo A; Ramos A Biomech Model Mechanobiol; 2015 Oct; 14(5):1057-70. PubMed ID: 25801173 [TBL] [Abstract][Full Text] [Related]
16. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Amann E; Wolff P; Breel E; van Griensven M; Balmayor ER Acta Biomater; 2017 Apr; 52():130-144. PubMed ID: 28131943 [TBL] [Abstract][Full Text] [Related]
17. Neurite extension and neuronal differentiation of human induced pluripotent stem cell derived neural stem cells on polyethylene glycol hydrogels containing a continuous Young's Modulus gradient. Mosley MC; Lim HJ; Chen J; Yang YH; Li S; Liu Y; Smith Callahan LA J Biomed Mater Res A; 2017 Mar; 105(3):824-833. PubMed ID: 27798956 [TBL] [Abstract][Full Text] [Related]
18. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering. Kim HD; Heo J; Hwang Y; Kwak SY; Park OK; Kim H; Varghese S; Hwang NS Tissue Eng Part A; 2015 Feb; 21(3-4):757-66. PubMed ID: 25266634 [TBL] [Abstract][Full Text] [Related]
19. Engineered microporosity: enhancing the early regenerative potential of decellularized temporomandibular joint discs. Juran CM; Dolwick MF; McFetridge PS Tissue Eng Part A; 2015 Feb; 21(3-4):829-39. PubMed ID: 25319941 [TBL] [Abstract][Full Text] [Related]
20. Inorganic-organic hybrid scaffolds for osteochondral regeneration. Munoz-Pinto DJ; McMahon RE; Kanzelberger MA; Jimenez-Vergara AC; Grunlan MA; Hahn MS J Biomed Mater Res A; 2010 Jul; 94(1):112-21. PubMed ID: 20128006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]