BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 2329189)

  • 1. Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey.
    Lamantia AS; Rakic P
    J Comp Neurol; 1990 Jan; 291(4):520-37. PubMed ID: 2329189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey.
    LaMantia AS; Rakic P
    J Comp Neurol; 1994 Feb; 340(3):328-36. PubMed ID: 8188854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways.
    Silver J; Lorenz SE; Wahlsten D; Coughlin J
    J Comp Neurol; 1982 Sep; 210(1):10-29. PubMed ID: 7130467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques.
    Demeter S; Rosene DL; Van Hoesen GW
    J Comp Neurol; 1990 Dec; 302(1):29-53. PubMed ID: 2086614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures.
    Demeter S; Rosene DL; Van Hoesen GW
    J Comp Neurol; 1985 Mar; 233(1):30-47. PubMed ID: 3980771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses.
    Lent R; Uziel D; Baudrimont M; Fallet C
    J Comp Neurol; 2005 Mar; 483(4):375-82. PubMed ID: 15700272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased axon number in the anterior commissure of mice lacking a corpus callosum.
    Livy DJ; Schalomon PM; Roy M; Zacharias MC; Pimenta J; Lent R; Wahlsten D
    Exp Neurol; 1997 Aug; 146(2):491-501. PubMed ID: 9270060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topography of interhemispheric connections in neocortex of mice with congenital deficiencies of the callosal commissure.
    Olavarria J; Serra-Oller MM; Yee KT; Van Sluyters RC
    J Comp Neurol; 1988 Apr; 270(4):575-90. PubMed ID: 3372749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of transitory corpus callosum axons projecting to developing cat visual cortex revealed by DiI.
    Elberger AJ
    J Comp Neurol; 1993 Jul; 333(3):326-42. PubMed ID: 8349847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1.
    Ha HY; Cho IH; Lee KW; Lee KW; Song JY; Kim KS; Yu YM; Lee JK; Song JS; Yang SD; Shin HS; Han PL
    Dev Biol; 2005 Jan; 277(1):184-99. PubMed ID: 15572149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disrupted myelin and axon loss in the anterior commissure of the aged rhesus monkey.
    Sandell JH; Peters A
    J Comp Neurol; 2003 Nov; 466(1):14-30. PubMed ID: 14515238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the anterior commissure in the opossum: midline extracellular space and glia coincide with early axon decussation.
    Cummings DM; Malun D; Brunjes PC
    J Neurobiol; 1997 Apr; 32(4):403-14. PubMed ID: 9087892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some glial progenitors in the neonatal subventricular zone migrate through the corpus callosum to the contralateral cerebral hemisphere.
    Kakita A; Zerlin M; Takahashi H; Goldman JE
    J Comp Neurol; 2003 Apr; 458(4):381-8. PubMed ID: 12619072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain.
    Andrews W; Liapi A; Plachez C; Camurri L; Zhang J; Mori S; Murakami F; Parnavelas JG; Sundaresan V; Richards LJ
    Development; 2006 Jun; 133(11):2243-52. PubMed ID: 16690755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Agenesis of the corpus callosum. Neuropathologic study and physiopathologic hypotheses].
    Gelot A; Lewin F; Moraine C; Pompidou A
    Neurochirurgie; 1998 May; 44(1 Suppl):74-84. PubMed ID: 9757326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphometric analysis of the human corpus callosum and anterior commissure.
    Demeter S; Ringo JL; Doty RW
    Hum Neurobiol; 1988; 6(4):219-26. PubMed ID: 3350703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of paleocortical projections through the anterior commissure of hamsters adopts progressive, not regressive, strategies.
    Lent R; Guimarães RZ
    J Neurobiol; 1991 Jul; 22(5):475-98. PubMed ID: 1890425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of myelinated axons of corpus callosum in the human brain.
    Sargon MF; Celik HH; Aksit MD; Karaağaoğlu E
    Int J Neurosci; 2007 Jun; 117(6):749-55. PubMed ID: 17454242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurons in the corpus callosum of the cat during postnatal development.
    Riederer BM; Berbel P; Innocenti GM
    Eur J Neurosci; 2004 Apr; 19(8):2039-46. PubMed ID: 15090031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of myelinated axons of commissural fibers in the rat brain.
    Sargon MF; Mas N; Senan S; Ozdemir B; Celik HH; Cumhur M
    Anat Histol Embryol; 2003 Jun; 32(3):141-4. PubMed ID: 12823099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.