These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23292397)

  • 21. Hough-transform system with optical anamorphic preprocessing and digital postprocessing.
    Ferreira C; Moya A; Szoplik T; Domingo J
    Appl Opt; 1992 Nov; 31(32):6882-8. PubMed ID: 20733926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subpixel photometric stereo.
    Tan P; Lin S; Quan L
    IEEE Trans Pattern Anal Mach Intell; 2008 Aug; 30(8):1460-71. PubMed ID: 18566498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Digital color management in full-color holographic three-dimensional printer.
    Yang F; Murakami Y; Yamaguchi M
    Appl Opt; 2012 Jul; 51(19):4343-52. PubMed ID: 22772106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation and benchmarking of a pixel-shifting camera for superresolution lensless digital holography.
    Li Y; Lilley F; Burton D; Lalor M
    Appl Opt; 2010 Mar; 49(9):1643-50. PubMed ID: 20300162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integral imaging based 3D display of holographic data.
    Yöntem AÖ; Onural L
    Opt Express; 2012 Oct; 20(22):24175-95. PubMed ID: 23187181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of charge-coupled device size on axial measurement error in digital holographic system.
    Hao Y; Asundi A
    Opt Lett; 2013 Apr; 38(8):1194-6. PubMed ID: 23595428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography.
    Tian L; Loomis N; Domínguez-Caballero JA; Barbastathis G
    Appl Opt; 2010 Mar; 49(9):1549-54. PubMed ID: 20300149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface imaging using holographic optical tweezers.
    Phillips DB; Grieve JA; Olof SN; Kocher SJ; Bowman R; Padgett MJ; Miles MJ; Carberry DM
    Nanotechnology; 2011 Jul; 22(28):285503. PubMed ID: 21646693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Digital holographic particle volume reconstruction using a deep neural network.
    Shimobaba T; Takahashi T; Yamamoto Y; Endo Y; Shiraki A; Nishitsuji T; Hoshikawa N; Kakue T; Ito T
    Appl Opt; 2019 Mar; 58(8):1900-1906. PubMed ID: 30874054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal motion of a holographically trapped SPM-like probe.
    Simpson SH; Hanna S
    Nanotechnology; 2009 Sep; 20(39):395710. PubMed ID: 19726835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superresolution imaging in optical tweezers using high-speed cameras.
    Staforelli JP; Vera E; Brito JM; Solano P; Torres S; Saavedra C
    Opt Express; 2010 Feb; 18(4):3322-31. PubMed ID: 20389339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subpixel area-based evaluation for crosstalk suppression in quasi-three-dimensional displays.
    Zhuang Z; Surman P; Cheng Q; Thibault S; Zheng Y; Sun XW
    Appl Opt; 2017 Jul; 56(19):5450-5457. PubMed ID: 29047503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compressive holographic two-dimensional localization with 1/30(2) subpixel accuracy.
    Liu Y; Tian L; Hsieh CH; Barbastathis G
    Opt Express; 2014 Apr; 22(8):9774-82. PubMed ID: 24787862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast computation of Fresnel diffraction field of a three-dimensional object for a pixelated optical device.
    Esmer GB
    Appl Opt; 2013 Jan; 52(1):A18-25. PubMed ID: 23292391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Best linear unbiased axial localization in three-dimensional fluorescent bead tracking with subnanometer resolution using off-focus images.
    Zhang Z; Menq CH
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jun; 26(6):1484-93. PubMed ID: 19488188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiview microscopy of single cells through microstructure-based indirect optical manipulation.
    Vizsnyiczai G; Búzás A; Lakshmanrao Aekbote B; Fekete T; Grexa I; Ormos P; Kelemen L
    Biomed Opt Express; 2020 Feb; 11(2):945-962. PubMed ID: 32133231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creation and manipulation of three-dimensional optically trapped structures.
    MacDonald MP; Paterson L; Volke-Sepulveda K; Arlt J; Sibbett W; Dholakia K
    Science; 2002 May; 296(5570):1101-3. PubMed ID: 12004124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multi-mode fiber probe for holographic micromanipulation and microscopy.
    Bianchi S; Di Leonardo R
    Lab Chip; 2012 Feb; 12(3):635-9. PubMed ID: 22170301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hologram reconstruction corrected for measurements through layers with different refractive indices in digital in-line holographic microscopy.
    Sendra GH; Weisse S; Maleschlijski S; Rosenhahn A
    Appl Opt; 2012 Jun; 51(16):3416-23. PubMed ID: 22695578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements.
    Saucedo-A T; De la Torre-Ibarra MH; Santoyo FM; Moreno I
    Opt Express; 2010 Sep; 18(19):19867-75. PubMed ID: 20940878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.