BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23292456)

  • 1. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake.
    Zotz G; Winkler U
    Oecologia; 2013 Mar; 171(3):733-41. PubMed ID: 23292456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The velamen radicum is common among terrestrial monocotyledons.
    Zotz G; Schickenberg N; Albach D
    Ann Bot; 2017 Nov; 120(5):625-632. PubMed ID: 28961783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processes controlling programmed cell death of root velamen radicum in an epiphytic orchid.
    Li JW; Zhang SB; Xi HP; Bradshaw CJA; Zhang JL
    Ann Bot; 2020 Jul; 126(2):261-275. PubMed ID: 32318689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic.
    Chomicki G; Bidel LPR; Ming F; Coiro M; Zhang X; Wang Y; Baissac Y; Jay-Allemand C; Renner SS
    New Phytol; 2015 Feb; 205(3):1330-1341. PubMed ID: 25345817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does A Velamen Radicum Effectively Protect Epiphyte Roots against Excessive Infrared Radiation?
    Rodríguez Quiel C; Einzmann HJR; Zotz G
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical composition of cell walls in velamentous roots of epiphytic Orchidaceae.
    Joca TAC; de Oliveira DC; Zotz G; Cardoso JCF; Moreira ASFP
    Protoplasma; 2020 Jan; 257(1):103-118. PubMed ID: 31402407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological diversity of orchids.
    Zhang S; Yang Y; Li J; Qin J; Zhang W; Huang W; Hu H
    Plant Divers; 2018 Aug; 40(4):196-208. PubMed ID: 30740565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural plasticity in roots of the hemiepiphyte Vanilla phaeantha Rchb.f. (Orchidaceae): a relationship between environment and function.
    de Lima JF; Moreira ASFP
    Naturwissenschaften; 2022 Aug; 109(5):46. PubMed ID: 35997846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological diversity of the velamen radicum in the genus Anthurium (Araceae).
    Tay JYL; Werner JC; Zotz G
    Plant Biol (Stuttg); 2024 Jun; ():. PubMed ID: 38924293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-morpho-anatomical mechanisms involve in epiphytic adaptation of micropropagated plants of Vanda tessellata (Roxb.) Hook. ex G. Don.
    Mani M; Rasangam L; Selvam P; Shekhawat MS
    Microsc Res Tech; 2021 Apr; 84(4):712-722. PubMed ID: 33089940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Localization of associative cyanobacteria on the roots of epiphytic orchids].
    Tsavkelova EA; Lobakova ES; Kolomeĭtseva GL; Cherdyntseva TA; Netrusov AI
    Mikrobiologiia; 2003; 72(1):99-104. PubMed ID: 12698799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural adaptations of two sympatric epiphytic orchids (Orchidaceae) to a cloudy forest environment in rocky outcrops of Southeast Brazil.
    Moreira AS; Filho JP; Isaias RM
    Rev Biol Trop; 2013 Sep; 61(3):1053-65. PubMed ID: 24027907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Orchid Velamen: A Model System for Studying Patterned Secondary Cell Wall Development?
    Idris NA; Aleamotuʻa M; McCurdy DW; Collings DA
    Plants (Basel); 2021 Jul; 10(7):. PubMed ID: 34371560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Associative cyanobacteria isolated from the roots of epiphytic orchids].
    Tsavkelova EA; Lobakova ES; Kolomeĭtseva GL; Cherdyntseva TA; Netrusov AI
    Mikrobiologiia; 2003; 72(1):105-10. PubMed ID: 12698800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacterial Root Associations of Leafless Epiphytic Orchids.
    Tsavkelova EA; Glukhareva ID; Volynchikova EA; Egorova MA; Leontieva MR; Malakhova DV; Kolomeitseva GL; Netrusov AI
    Microorganisms; 2022 May; 10(5):. PubMed ID: 35630449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gains and losses of the epiphytic lifestyle in epidendroid orchids: review and new analyses of succulence traits.
    Collobert G; Perez-Lamarque B; Dubuisson JY; Martos F
    Ann Bot; 2023 Nov; 132(4):787-800. PubMed ID: 37777476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated evolution of leaf and root anatomic traits in
    Qi Y; Huang JL; Zhang SB
    AoB Plants; 2020 Aug; 12(4):plaa034. PubMed ID: 32818052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient uptake of phosphorus in epiphytic bromeliads.
    Winkler U; Zotz G
    Ann Bot; 2009 Feb; 103(3):477-84. PubMed ID: 19033287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure of Catasetum fimbriatum aerial roots to light coordinates carbon partitioning between source and sink organs in an auxin dependent manner.
    Oliveira PMR; Rodrigues MA; Gonçalves AZ; Kerbauy GB
    Plant Physiol Biochem; 2019 Feb; 135():341-347. PubMed ID: 30605871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A δ(15)N assessment of nitrogen deposition for the endangered epiphytic orchid Laelia speciosa from a city and an oak forest in Mexico.
    Díaz-Álvarez EA; Reyes-García C; de la Barrera E
    J Plant Res; 2016 Sep; 129(5):863-872. PubMed ID: 27282994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.