BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

970 related articles for article (PubMed ID: 23292513)

  • 1. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP.
    Miller RA; Chu Q; Xie J; Foretz M; Viollet B; Birnbaum MJ
    Nature; 2013 Feb; 494(7436):256-60. PubMed ID: 23292513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential AMPK phosphorylation by glucagon and metformin regulates insulin signaling in human hepatic cells.
    Aw DK; Sinha RA; Xie SY; Yen PM
    Biochem Biophys Res Commun; 2014 May; 447(4):569-73. PubMed ID: 24735537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B.
    Johanns M; Lai YC; Hsu MF; Jacobs R; Vertommen D; Van Sande J; Dumont JE; Woods A; Carling D; Hue L; Viollet B; Foretz M; Rider MH
    Nat Commun; 2016 Mar; 7():10856. PubMed ID: 26952277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.
    He L; Chang E; Peng J; An H; McMillin SM; Radovick S; Stratakis CA; Wondisford FE
    J Biol Chem; 2016 May; 291(20):10562-70. PubMed ID: 27002150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclocarya paliurus triterpenoids suppress hepatic gluconeogenesis via AMPK-mediated cAMP/PKA/CREB pathway.
    Cao J; Zheng R; Chang X; Zhao Y; Zhang D; Gao M; Yin Z; Jiang C; Zhang J
    Phytomedicine; 2022 Jul; 102():154175. PubMed ID: 35609386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Berberine promotes glucose uptake and inhibits gluconeogenesis by inhibiting deacetylase SIRT3.
    Zhang B; Pan Y; Xu L; Tang D; Dorfman RG; Zhou Q; Yin Y; Li Y; Zhou L; Zhao S; Zou X; Wang L; Zhang M
    Endocrine; 2018 Dec; 62(3):576-587. PubMed ID: 30117113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-diabetic biguanides inhibit hormone-induced intracellular Ca2+ concentration oscillations in rat hepatocytes.
    Ubl JJ; Chen S; Stucki JW
    Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):561-7. PubMed ID: 7998993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK).
    Cao J; Meng S; Chang E; Beckwith-Fickas K; Xiong L; Cole RN; Radovick S; Wondisford FE; He L
    J Biol Chem; 2014 Jul; 289(30):20435-46. PubMed ID: 24928508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biguanides Metformin and Phenformin Generate Therapeutic Effects via AMP-Activated Protein Kinase/Extracellular-Regulated Kinase Pathways in an In Vitro Model of Graves' Orbitopathy.
    Han YE; Hwang S; Kim JH; Byun JW; Yoon JS; Lee EJ
    Thyroid; 2018 Apr; 28(4):528-536. PubMed ID: 29589999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of metformin glycinate and hydrochloride in glucose production, AMPK phosphorylation and insulin sensitivity in hepatocytes from non-diabetic and diabetic mice.
    Rada P; Mosquera A; Muntané J; Ferrandiz F; Rodriguez-Mañas L; de Pablo F; González-Canudas J; Valverde ÁM
    Food Chem Toxicol; 2019 Jan; 123():470-480. PubMed ID: 30414960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An energetic tale of AMPK-independent effects of metformin.
    Miller RA; Birnbaum MJ
    J Clin Invest; 2010 Jul; 120(7):2267-70. PubMed ID: 20577046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMP-activated protein kinase regulates glucagon secretion from mouse pancreatic alpha cells.
    Leclerc I; Sun G; Morris C; Fernandez-Millan E; Nyirenda M; Rutter GA
    Diabetologia; 2011 Jan; 54(1):125-34. PubMed ID: 20938634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulated TGF-β1 contributes to hyperglycaemia in type 2 diabetes by potentiating glucagon signalling.
    Xiao Y; Wang Y; Ryu J; Liu W; Zou H; Zhang R; Yan Y; Dai Z; Zhang D; Sun LZ; Liu F; Zhou Z; Dong LQ
    Diabetologia; 2023 Jun; 66(6):1142-1155. PubMed ID: 36917279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells.
    Turban S; Stretton C; Drouin O; Green CJ; Watson ML; Gray A; Ross F; Lantier L; Viollet B; Hardie DG; Marette A; Hundal HS
    J Biol Chem; 2012 Jun; 287(24):20088-99. PubMed ID: 22511782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis.
    Svegliati-Baroni G; Saccomanno S; Rychlicki C; Agostinelli L; De Minicis S; Candelaresi C; Faraci G; Pacetti D; Vivarelli M; Nicolini D; Garelli P; Casini A; Manco M; Mingrone G; Risaliti A; Frega GN; Benedetti A; Gastaldelli A
    Liver Int; 2011 Oct; 31(9):1285-97. PubMed ID: 21745271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of the AMPK gamma 1 subunit in metformin suppression of liver glucose production.
    An H; Wang Y; Qin C; Li M; Maheshwari A; He L
    Sci Rep; 2020 Jun; 10(1):10482. PubMed ID: 32591547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperglucagonemia and altered responsiveness of hepatic adenylate cyclase-adenosine 3',5'-monophosphate system to hormonal stimulation during chronic ingestion of DL-ethionine.
    Craven PA; Derubertis FR
    Biochim Biophys Acta; 1977 Apr; 497(2):415-27. PubMed ID: 192313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of AMP-activated protein kinase in mechanism of metformin action.
    Zhou G; Myers R; Li Y; Chen Y; Shen X; Fenyk-Melody J; Wu M; Ventre J; Doebber T; Fujii N; Musi N; Hirshman MF; Goodyear LJ; Moller DE
    J Clin Invest; 2001 Oct; 108(8):1167-74. PubMed ID: 11602624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PHD3 regulates glucose metabolism by suppressing stress-induced signalling and optimising gluconeogenesis and insulin signalling in hepatocytes.
    Yano H; Sakai M; Matsukawa T; Yagi T; Naganuma T; Mitsushima M; Iida S; Inaba Y; Inoue H; Unoki-Kubota H; Kaburagi Y; Asahara SI; Kido Y; Minami S; Kasuga M; Matsumoto M
    Sci Rep; 2018 Sep; 8(1):14290. PubMed ID: 30250231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the actions of widely used diabetes drugs.
    Unger RH; Berglund ED; Habener JF; Cherrington AD
    Nat Med; 2013 Mar; 19(3):272-3. PubMed ID: 23467236
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 49.