These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 23292603)
1. KNApSAcK-3D: a three-dimensional structure database of plant metabolites. Nakamura K; Shimura N; Otabe Y; Hirai-Morita A; Nakamura Y; Ono N; Ul-Amin MA; Kanaya S Plant Cell Physiol; 2013 Feb; 54(2):e4. PubMed ID: 23292603 [TBL] [Abstract][Full Text] [Related]
2. KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Afendi FM; Okada T; Yamazaki M; Hirai-Morita A; Nakamura Y; Nakamura K; Ikeda S; Takahashi H; Altaf-Ul-Amin M; Darusman LK; Saito K; Kanaya S Plant Cell Physiol; 2012 Feb; 53(2):e1. PubMed ID: 22123792 [TBL] [Abstract][Full Text] [Related]
3. PRIMe: a Web site that assembles tools for metabolomics and transcriptomics. Akiyama K; Chikayama E; Yuasa H; Shimada Y; Tohge T; Shinozaki K; Hirai MY; Sakurai T; Kikuchi J; Saito K In Silico Biol; 2008; 8(3-4):339-45. PubMed ID: 19032166 [TBL] [Abstract][Full Text] [Related]
4. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities. Nakamura Y; Afendi FM; Parvin AK; Ono N; Tanaka K; Hirai Morita A; Sato T; Sugiura T; Altaf-Ul-Amin M; Kanaya S Plant Cell Physiol; 2014 Jan; 55(1):e7. PubMed ID: 24285751 [TBL] [Abstract][Full Text] [Related]
5. Metabolic profiling using Fourier-transform ion-cyclotron-resonance mass spectrometry. Ohta D; Shibata D; Kanaya S Anal Bioanal Chem; 2007 Nov; 389(5):1469-75. PubMed ID: 17922113 [TBL] [Abstract][Full Text] [Related]
6. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities. Ohtana Y; Abdullah AA; Altaf-Ul-Amin M; Huang M; Ono N; Sato T; Sugiura T; Horai H; Nakamura Y; Morita Hirai A; Lange KW; Kibinge NK; Katsuragi T; Shirai T; Kanaya S Mol Inform; 2014 Dec; 33(11-12):790-801. PubMed ID: 27485425 [TBL] [Abstract][Full Text] [Related]
7. Differential metabolomics unraveling light/dark regulation of metabolic activities in Arabidopsis cell culture. Nakamura Y; Kimura A; Saga H; Oikawa A; Shinbo Y; Kai K; Sakurai N; Suzuki H; Kitayama M; Shibata D; Kanaya S; Ohta D Planta; 2007 Dec; 227(1):57-66. PubMed ID: 17701204 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional structure database of natural metabolites (3DMET): a novel database of curated 3D structures. Maeda MH; Kondo K J Chem Inf Model; 2013 Mar; 53(3):527-33. PubMed ID: 23293959 [TBL] [Abstract][Full Text] [Related]
9. Systematization of the protein sequence diversity in enzymes related to secondary metabolic pathways in plants, in the context of big data biology inspired by the KNApSAcK motorcycle database. Ikeda S; Abe T; Nakamura Y; Kibinge N; Hirai Morita A; Nakatani A; Ono N; Ikemura T; Nakamura K; Altaf-Ul-Amin M; Kanaya S Plant Cell Physiol; 2013 May; 54(5):711-27. PubMed ID: 23509110 [TBL] [Abstract][Full Text] [Related]
10. Plant metabolomics: from experimental design to knowledge extraction. Rai A; Umashankar S; Swarup S Methods Mol Biol; 2013; 1069():279-312. PubMed ID: 23996322 [TBL] [Abstract][Full Text] [Related]
11. Web-based resources for mass-spectrometry-based metabolomics: a user's guide. Tohge T; Fernie AR Phytochemistry; 2009 Mar; 70(4):450-6. PubMed ID: 19285697 [TBL] [Abstract][Full Text] [Related]
12. PRIMe Update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation. Sakurai T; Yamada Y; Sawada Y; Matsuda F; Akiyama K; Shinozaki K; Hirai MY; Saito K Plant Cell Physiol; 2013 Feb; 54(2):e5. PubMed ID: 23292601 [TBL] [Abstract][Full Text] [Related]
13. Plant metabolomics--meeting the analytical challenges of comprehensive metabolite analysis. Hegeman AD Brief Funct Genomics; 2010 Mar; 9(2):139-48. PubMed ID: 20064859 [TBL] [Abstract][Full Text] [Related]
14. Combined 3D QSAR and molecular docking studies to reveal novel cannabinoid ligands with optimum binding activity. Durdagi S; Papadopoulos MG; Papahatjis DP; Mavromoustakos T Bioorg Med Chem Lett; 2007 Dec; 17(24):6754-63. PubMed ID: 17980589 [TBL] [Abstract][Full Text] [Related]
15. Molecular docking and 3D-QSAR studies on the binding mechanism of statine-based peptidomimetics with beta-secretase. Zuo Z; Luo X; Zhu W; Shen J; Shen X; Jiang H; Chen K Bioorg Med Chem; 2005 Mar; 13(6):2121-31. PubMed ID: 15727865 [TBL] [Abstract][Full Text] [Related]
16. MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism. Deborde C; Jacob D Methods Mol Biol; 2014; 1083():3-16. PubMed ID: 24218206 [TBL] [Abstract][Full Text] [Related]
17. PSC-db: A Structured and Searchable 3D-Database for Plant Secondary Compounds. Valdés-Jiménez A; Peña-Varas C; Borrego-Muñoz P; Arrue L; Alegría-Arcos M; Nour-Eldin H; Dreyer I; Nuñez-Vivanco G; Ramírez D Molecules; 2021 Feb; 26(4):. PubMed ID: 33672700 [TBL] [Abstract][Full Text] [Related]
18. Putting The Plant Metabolic Network pathway databases to work: going offline to gain new capabilities. Dreher K Methods Mol Biol; 2014; 1083():151-71. PubMed ID: 24218215 [TBL] [Abstract][Full Text] [Related]
19. Combined 3D-QSAR modeling and molecular docking study on quinoline derivatives as inhibitors of P-selectin. Zeng H; Cao R; Zhang H Chem Biol Drug Des; 2009 Dec; 74(6):596-610. PubMed ID: 19843078 [TBL] [Abstract][Full Text] [Related]
20. Representation of chemical information in OASIS centralized 3D database for existing chemicals. Nikolov N; Grancharov V; Stoyanova G; Pavlov T; Mekenyan O J Chem Inf Model; 2006; 46(6):2537-51. PubMed ID: 17125194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]