BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 23292757)

  • 1. Capturing the time-varying drivers of an epidemic using stochastic dynamical systems.
    Dureau J; Kalogeropoulos K; Baguelin M
    Biostatistics; 2013 Jul; 14(3):541-55. PubMed ID: 23292757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling.
    Choi B; Rempala GA
    Biostatistics; 2012 Jan; 13(1):153-65. PubMed ID: 21835814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian model choice for epidemic models with two levels of mixing.
    Knock ES; O'Neill PD
    Biostatistics; 2014 Jan; 15(1):46-59. PubMed ID: 23887980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian inference for stochastic multitype epidemics in structured populations using sample data.
    O'Neill PD
    Biostatistics; 2009 Oct; 10(4):779-91. PubMed ID: 19648227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks.
    Conesa D; Martínez-Beneito MA; Amorós R; López-Quílez A
    Stat Methods Med Res; 2015 Apr; 24(2):206-23. PubMed ID: 21873301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference for stochastic kinetic models using a diffusion approximation.
    Golightly A; Wilkinson DJ
    Biometrics; 2005 Sep; 61(3):781-8. PubMed ID: 16135029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
    Cazelles B; Champagne C; Nguyen-Van-Yen B; Comiskey C; Vergu E; Roche B
    PLoS Comput Biol; 2021 Jul; 17(7):e1009211. PubMed ID: 34310593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring epidemiological dynamics with Bayesian coalescent inference: the merits of deterministic and stochastic models.
    Popinga A; Vaughan T; Stadler T; Drummond AJ
    Genetics; 2015 Feb; 199(2):595-607. PubMed ID: 25527289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the estimation of the reproduction number based on misreported epidemic data.
    Azmon A; Faes C; Hens N
    Stat Med; 2014 Mar; 33(7):1176-92. PubMed ID: 24122943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the performance of particle filter algorithms applied to tracking of a disease epidemic.
    Sheinson DM; Niemi J; Meiring W
    Math Biosci; 2014 Sep; 255():21-32. PubMed ID: 25016201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical statistical modelling of influenza epidemic dynamics in space and time.
    Mugglin AS; Cressie N; Gemmell I
    Stat Med; 2002 Sep; 21(18):2703-21. PubMed ID: 12228886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian hierarchical model for quantitative real-time PCR data.
    Follestad T; Jørstad TS; Erlandsen SE; Sandvik AK; Bones AM; Langaas M
    Stat Appl Genet Mol Biol; 2010; 9():Article 3. PubMed ID: 20196753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nowcasting influenza epidemics using non-homogeneous hidden Markov models.
    Nunes B; Natário I; Lucília Carvalho M
    Stat Med; 2013 Jul; 32(15):2643-60. PubMed ID: 23124850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling under-reporting in epidemics.
    Gamado KM; Streftaris G; Zachary S
    J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data.
    Cauchemez S; Carrat F; Viboud C; Valleron AJ; Boëlle PY
    Stat Med; 2004 Nov; 23(22):3469-87. PubMed ID: 15505892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian Markov switching models for the early detection of influenza epidemics.
    Martínez-Beneito MA; Conesa D; López-Quílez A; López-Maside A
    Stat Med; 2008 Sep; 27(22):4455-68. PubMed ID: 18618414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV with contact tracing: a case study in approximate Bayesian computation.
    Blum MG; Tran VC
    Biostatistics; 2010 Oct; 11(4):644-60. PubMed ID: 20457785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal instruments and models for noisy chaos.
    Strelioff CC; Crutchfield JP
    Chaos; 2007 Dec; 17(4):043127. PubMed ID: 18163791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing variational Bayes with Markov chain Monte Carlo for Bayesian computation in neuroimaging.
    Nathoo FS; Lesperance ML; Lawson AB; Dean CB
    Stat Methods Med Res; 2013 Aug; 22(4):398-423. PubMed ID: 22642986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
    Lekone PE; Finkenstädt BF
    Biometrics; 2006 Dec; 62(4):1170-7. PubMed ID: 17156292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.