BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23293)

  • 1. On the mechanism of substrate binding to the purine-transport system of Saccharomyces cerevisiae.
    Forêt M; Schmidt R; Reichert U
    Eur J Biochem; 1978 Jan; 82(1):33-43. PubMed ID: 23293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of mutated purine-cytosine permease from Saccharomyces cerevisiae. A possible role of the hydrophilic segment 371-377 in the active carrier conformation.
    Ferreira T; Brèthes D; Pinson B; Napias C; Chevallier J
    J Biol Chem; 1997 Apr; 272(15):9697-702. PubMed ID: 9092500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purine-cytosine permease of Saccharomyces cerevisiae. Effect of external pH on nucleobase uptake and binding.
    Brèthes D; Napias C; Torchut E; Chevallier J
    Eur J Biochem; 1992 Dec; 210(3):785-91. PubMed ID: 1483463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of an intragenic second-site suppressor of purine-cytosine permease from Saccharomyces cerevisiae. Possible role of Ser272 in the base translocation process.
    Ferreira T; Chevallier J; Paumard P; Napias C; Brèthes D
    Eur J Biochem; 1999 Feb; 260(1):22-30. PubMed ID: 10091580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein.
    Munagala NR; Wang CC
    Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A purine permease in Candida glabrata.
    Sen Gupta S; Kerridge D; Chevallier MR
    FEMS Microbiol Lett; 1995 Feb; 126(1):93-6. PubMed ID: 7896084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo and in vitro studies of the purine-cytosine permease of Saccharomyces cerevisiae. Functional analysis of a mutant with an altered apparent transport constant of uptake.
    Brèthes D; Chirio MC; Napias C; Chevallier MR; Lavie JL; Chevallier J
    Eur J Biochem; 1992 Mar; 204(2):699-704. PubMed ID: 1541283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of 2-methyl-4-amino-5-hydroxymethylpyrimidine in Saccharomyces cerevisiae.
    Iwashima A; Kawasaki Y; Kimura Y
    Biochim Biophys Acta; 1990 Feb; 1022(2):211-4. PubMed ID: 2407290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on purine transport and on purine content in vacuoles isolated from Saccharomyces cerevisiae.
    Nagy M
    Biochim Biophys Acta; 1979 Dec; 558(2):221-32. PubMed ID: 41578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a dynamic role for proline376 in the purine-cytosine permease of Saccharomyces cerevisiae.
    Ferreira T; Napias C; Chevallier J; Brèthes D
    Eur J Biochem; 1999 Jul; 263(1):57-64. PubMed ID: 10429187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution F569S converts UapA, a specific uric acid-xanthine transporter, into a broad specificity transporter for purine-related solutes.
    Amillis S; Koukaki M; Diallinas G
    J Mol Biol; 2001 Nov; 313(4):765-74. PubMed ID: 11697902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of L-[14C]leucine transport in Saccharomyces cerevisiae: effect of energy coupling inhibitors.
    Ramos EH; de Bongioanni LC; Stoppani AO
    Biochim Biophys Acta; 1980 Jun; 599(1):214-31. PubMed ID: 6994811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of apf1 mutation causing defective amino acid transport in Saccharomyces cerevisiae.
    Horák J; Kotyk A
    Biochem Mol Biol Int; 1993 Apr; 29(5):907-12. PubMed ID: 8389634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta-aminolevulinic acid transport in Saccharomyces cerevisiae.
    Bermúdez Moretti M; Correa García S; Stella C; Ramos E; Batlle AM
    Int J Biochem; 1993 Dec; 25(12):1917-24. PubMed ID: 8138030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae.
    Stambuk BU; De Araujo PS; Panek AD; Serrano R
    Eur J Biochem; 1996 May; 237(3):876-81. PubMed ID: 8647137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton and charge circulation through substrate symports in Saccharomyces cerevisiae: non-classical behaviour of the cytosine symport.
    Eddy AA; Hopkins P; Shaw R
    Symp Soc Exp Biol; 1994; 48():123-39. PubMed ID: 7597638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible mechanism of energy coupling in purine transport of Saccharomyces cerevisiae.
    Reichert U; Schmidt R; Foret M
    FEBS Lett; 1975 Mar; 52(1):100-2. PubMed ID: 235464
    [No Abstract]   [Full Text] [Related]  

  • 18. Fluorocytosine causes uncoupled dissipation of the proton gradient and behaves as an imperfect substrate of the yeast cytosine permease.
    Hopkins P; Shaw R; Acik L; Oliver S; Eddy AA
    Yeast; 1992 Dec; 8(12):1053-64. PubMed ID: 1293884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of purine, pyrimidine bases and nucleosides in Candida albicans, a pathogenic yeast.
    Rao TV; Verma RS; Prasad R
    Biochem Int; 1983 Mar; 6(3):409-17. PubMed ID: 6383386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae.
    Ballarin-Denti A; Den Hollander JA; Sanders D; Slayman CW; Slayman CL
    Biochim Biophys Acta; 1984 Nov; 778(1):1-16. PubMed ID: 6093875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.