BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23293)

  • 21. Kinetics of ion translocation across charged membranes mediated by a two-site transport mechanism. Effects of polyvalent cations upon rubidium uptake into yeast cells.
    Theuvenet AP; Borst-Pauwels GW
    Biochim Biophys Acta; 1976 Apr; 426(4):745-56. PubMed ID: 4106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative kinetic analysis of AzgA and Fcy21p, prototypes of the two major fungal hypoxanthine-adenine-guanine transporter families.
    Goudela S; Tsilivi H; Diallinas G
    Mol Membr Biol; 2006; 23(4):291-303. PubMed ID: 16923723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.
    Rapp M; Schein J; Hunt KA; Nalam V; Mourad GS; Schultes NP
    Protoplasma; 2016 Mar; 253(2):611-23. PubMed ID: 26022088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-based redesign of corepressor specificity of the Escherichia coli purine repressor by substitution of residue 190.
    Lu F; Schumacher MA; Arvidson DN; Haldimann A; Wanner BL; Zalkin H; Brennan RG
    Biochemistry; 1998 Jan; 37(4):971-82. PubMed ID: 9454587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the catalytic mechanism of yeast inorganic pyrophosphatase.
    Knight WB; Fitts SW; Dunaway-Mariano D
    Biochemistry; 1981 Jul; 20(14):4079-86. PubMed ID: 6116500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypoxanthine uptake through a purine-selective nucleobase transporter in Trypanosoma brucei brucei procyclic cells is driven by protonmotive force.
    de Koning HP; Jarvis SM
    Eur J Biochem; 1997 Aug; 247(3):1102-10. PubMed ID: 9288936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways.
    Samyn DR; Ruiz-Pávon L; Andersson MR; Popova Y; Thevelein JM; Persson BL
    Biochem J; 2012 Aug; 445(3):413-22. PubMed ID: 22587366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles.
    Van Leeuwen CC; Weusthuis RA; Postma E; Van den Broek PJ; Van Dijken JP
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):441-5. PubMed ID: 1318030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center.
    Khangulov SV; Sossong TM; Ash DE; Dismukes GC
    Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic mechanism and substrate specificity of nitroalkane oxidase.
    Heasley CJ; Fitzpatrick PF
    Biochem Biophys Res Commun; 1996 Aug; 225(1):6-10. PubMed ID: 8769086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for a common transport system for cytosine, adenine and hypoxanthine in Saccharomyces cerevisiae and Candida albicans.
    Polak A; Grenson M
    Eur J Biochem; 1973 Jan; 32(2):276-82. PubMed ID: 4569075
    [No Abstract]   [Full Text] [Related]  

  • 33. Role of the proline residue 376 in the catalytic activity of purine-cytosine permease of Saccharomyces cerevisiae.
    Ferreira T; Chevallier J; Napias C; Brèthes D
    Folia Microbiol (Praha); 1998; 43(2):193. PubMed ID: 9721608
    [No Abstract]   [Full Text] [Related]  

  • 34. Adenosine deaminase from Saccharomyces cerevisiae: kinetics and interaction with transition and ground state inhibitors.
    Lupidi G; Marmocchi F; Falasca M; Venardi G; Cristalli G; Grifantini M; Whitehead E; Riva F
    Biochim Biophys Acta; 1992 Aug; 1122(3):311-6. PubMed ID: 1504093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution to the physiological characterization of glycerol active uptake in Saccharomyces cerevisiae.
    Lages F; Lucas C
    Biochim Biophys Acta; 1997 Nov; 1322(1):8-18. PubMed ID: 9398075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Kinetics and mechanism of the 3H to 1H in C(8)H groups of purine derivatives].
    Maslova RN; Lesnik EA; Varshavskiĭ IaM
    Mol Biol (Mosk); 1975; 9(2):310-20. PubMed ID: 3730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of residues critical for proton-coupled glutathione translocation in the yeast glutathione transporter, Hgt1p.
    Zulkifli M; Bachhawat AK
    Biochem J; 2017 May; 474(11):1807-1821. PubMed ID: 28389436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy requirements for maltose transport in yeast.
    Serrano R
    Eur J Biochem; 1977 Oct; 80(1):97-102. PubMed ID: 21792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoaffinity labeling and characterization of the cloned purine-cytosine transport system in Saccharomyces cerevisiae.
    Schmidt R; Manolson MF; Chevallier MR
    Proc Natl Acad Sci U S A; 1984 Oct; 81(20):6276-80. PubMed ID: 6387700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pH dependence of the reaction catalyzed by yeast Mg-enolase.
    Vinarov DA; Nowak T
    Biochemistry; 1998 Oct; 37(43):15238-46. PubMed ID: 9790688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.