BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23293017)

  • 21. Adenanthos species (Proteaceae) in phosphorus-impoverished environments use a variety of phosphorus-acquisition strategies and achieve high-phosphorus-use efficiency.
    Shen Q; Ranathunge K; Lambers H; Finnegan PM
    Ann Bot; 2024 Apr; 133(3):483-494. PubMed ID: 38198749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Update on phosphorus nutrition in Proteaceae. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops?
    Lambers H; Finnegan PM; Laliberté E; Pearse SJ; Ryan MH; Shane MW; Veneklaas EJ
    Plant Physiol; 2011 Jul; 156(3):1058-66. PubMed ID: 21498583
    [No Abstract]   [Full Text] [Related]  

  • 23. Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions.
    Isaac ME; Harmand JM; Drevon JJ
    J Plant Physiol; 2011 May; 168(8):776-81. PubMed ID: 21211863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Nitrogen and phosphorus contents and resorption efficiency of thirty broadleaved woody plants in Yangjifeng, Jiangxi, China.].
    Shao J; Chen XP; Li JL; Hu DD; Wang MT; Zhong QL; Cheng DL
    Ying Yong Sheng Tai Xue Bao; 2021 Apr; 32(4):1193-1200. PubMed ID: 33899387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat.
    Prodhan MA; Jost R; Watanabe M; Hoefgen R; Lambers H; Finnegan PM
    New Phytol; 2017 Aug; 215(3):1068-1079. PubMed ID: 28656667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands.
    Niinemets U; Tamm U
    Tree Physiol; 2005 Aug; 25(8):1001-14. PubMed ID: 15929931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does phenotypic plasticity in carboxylate exudation differ among rare and widespread Banksia species (Proteaceae)?
    Denton MD; Veneklaas EJ; Lambers H
    New Phytol; 2007; 173(3):592-599. PubMed ID: 17244054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined effects of nitrogen addition and litter manipulation on nutrient resorption of Leymus chinensis in a semi-arid grassland of northern China.
    Li X; Liu J; Fan J; Ma Y; Ding S; Zhong Z; Wang D
    Plant Biol (Stuttg); 2015 Jan; 17(1):9-15. PubMed ID: 24666511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of body size and root to shoot ratio on foliar nutrient resorption efficiency in Amaranthus mangostanus.
    Peng H; Yan Z; Chen Y; Zhao X; Han W
    Am J Bot; 2019 Mar; 106(3):363-370. PubMed ID: 30861100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorus and nitrogen resorption from different chemical fractions in senescing leaves of tropical tree species on Mount Kinabalu, Borneo.
    Tsujii Y; Onoda Y; Kitayama K
    Oecologia; 2017 Oct; 185(2):171-180. PubMed ID: 28871400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species.
    Suriyagoda LD; Ryan MH; Renton M; Lambers H
    Ann Bot; 2012 Oct; 110(5):959-68. PubMed ID: 22847657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global scaling the leaf nitrogen and phosphorus resorption of woody species: Revisiting some commonly held views.
    Xu M; Zhu Y; Zhang S; Feng Y; Zhang W; Han X
    Sci Total Environ; 2021 Sep; 788():147807. PubMed ID: 34034176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.
    Pandey R; Zinta G; AbdElgawad H; Ahmad A; Jain V; Janssens IA
    Biotechnol Adv; 2015; 33(3-4):303-16. PubMed ID: 25797341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice.
    Gao W; Lu L; Qiu W; Wang C; Shou H
    Plant Cell Physiol; 2017 May; 58(5):885-892. PubMed ID: 28371895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of ammonium as a nitrogen source: effects of ambient acidity on growth and nitrogen accumulation by soybean.
    Tolley-Henry L; Raper CD
    Plant Physiol; 1986; 82(1):54-60. PubMed ID: 11539090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply.
    Lin ZH; Chen LS; Chen RB; Zhang FZ; Jiang HX; Tang N
    BMC Plant Biol; 2009 Apr; 9():43. PubMed ID: 19379526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The potential for phosphorus benefits through root placement in the rhizosphere of phosphorus-mobilising neighbours.
    Teste FP; Dixon KW; Lambers H; Zhou J; Veneklaas EJ
    Oecologia; 2020 Aug; 193(4):843-855. PubMed ID: 32816111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants.
    Nord EA; Shea K; Lynch JP
    Ann Bot; 2011 Aug; 108(2):391-404. PubMed ID: 21712299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cluster root-bearing Proteaceae species show a competitive advantage over non-cluster root-bearing species.
    Fajardo A; Piper FI
    Ann Bot; 2019 Nov; 124(6):1121-1131. PubMed ID: 31332426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tight control of nitrate acquisition in a plant species that evolved in an extremely phosphorus-impoverished environment.
    Prodhan MA; Jost R; Watanabe M; Hoefgen R; Lambers H; Finnegan PM
    Plant Cell Environ; 2016 Dec; 39(12):2754-2761. PubMed ID: 27766648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.