BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23293072)

  • 1. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):114-28. PubMed ID: 23293072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K; Wada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of erythrocyte deformation in a high shear flow.
    Nakamura M; Bessho S; Wada S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2358-61. PubMed ID: 19965186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.
    Levant M; Steinberg V
    Phys Rev E; 2016 Dec; 94(6-1):062412. PubMed ID: 28085369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tank-treading and tumbling frequencies of capsules and red blood cells.
    Yazdani AZ; Kalluri RM; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tension of red blood cell membrane in simple shear flow.
    Omori T; Ishikawa T; Barthès-Biesel D; Salsac AV; Imai Y; Yamaguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056321. PubMed ID: 23214889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows.
    Shi L; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056308. PubMed ID: 23214877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J
    J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape transitions of fluid vesicles and red blood cells in capillary flows.
    Noguchi H; Gompper G
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14159-64. PubMed ID: 16186506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels.
    Zhang J
    Microcirculation; 2011 Oct; 18(7):562-73. PubMed ID: 21624001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a single red blood cell in simple shear flow.
    Sinha K; Graham MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042710. PubMed ID: 26565275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary.
    Ye T; Li H; Lam KY
    Microvasc Res; 2010 Dec; 80(3):453-63. PubMed ID: 20643152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T; Pan TW; Xing ZW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041916. PubMed ID: 19518265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion.
    Tran-Son-Tay R; Sutera SP; Rao PR
    Biophys J; 1984 Jul; 46(1):65-72. PubMed ID: 6743758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of shear rate and suspending viscosity on deformation and frequency of red blood cells tank-treading in shear flows.
    Oulaid O; Saad AK; Aires PS; Zhang J
    Comput Methods Biomech Biomed Engin; 2016; 19(6):648-62. PubMed ID: 26158788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.