These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23293140)

  • 61. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides.
    Rosenbaum M; Schröder U; Scholz F
    Environ Sci Technol; 2005 Aug; 39(16):6328-33. PubMed ID: 16173600
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Essential Role of the Cytoplasmic Chemoreceptor TlpT in the
    Jones CW; Armitage JP
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28739674
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Role of proton motive force in phototactic and aerotactic responses of Rhodopseudomonas sphaeroides.
    Armitage JP; Ingham C; Evans MC
    J Bacteriol; 1985 Mar; 161(3):967-72. PubMed ID: 2982797
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pathway-based mean-field model for Escherichia coli chemotaxis.
    Si G; Wu T; Ouyang Q; Tu Y
    Phys Rev Lett; 2012 Jul; 109(4):048101. PubMed ID: 23006109
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Response kinetics of tethered bacteria to stepwise changes in nutrient concentration.
    Chernova AA; Armitage JP; Packer HL; Maini PK
    Biosystems; 2003 Sep; 71(1-2):51-9. PubMed ID: 14568206
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inverted behavioural responses in wild-type Rhodobacter sphaeroides to temporal stimuli.
    Packer HL; Armitage JP
    FEMS Microbiol Lett; 2000 Aug; 189(2):299-304. PubMed ID: 10930755
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biochemical study of multiple CheY response regulators of the chemotactic pathway of Rhodobacter sphaeroides.
    Ferré A; De La Mora J; Ballado T; Camarena L; Dreyfus G
    J Bacteriol; 2004 Aug; 186(15):5172-7. PubMed ID: 15262956
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A "trimer of dimers"-based model for the chemotactic signal transduction network in bacterial chemotaxis.
    Xin X; Othmer HG
    Bull Math Biol; 2012 Oct; 74(10):2339-82. PubMed ID: 22864951
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular stochastic simulations of chromatophore vesicles from Rhodobacter sphaeroides.
    Geyer T; Lauck F; Helms V
    J Biotechnol; 2007 Apr; 129(2):212-28. PubMed ID: 17276535
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mathematical modeling and experimental validation of chemotaxis under controlled gradients of methyl-aspartate in Escherichia coli.
    Vuppula RR; Tirumkudulu MS; Venkatesh KV
    Mol Biosyst; 2010 Jun; 6(6):1082-92. PubMed ID: 20485750
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On the role of the light-harvesting B880 in the correct insertion of the reaction center of Rhodobacter capsulatus and Rhodobacter sphaeroides.
    Jackson WJ; Kiley PJ; Haith CE; Kaplan S; Prince RC
    FEBS Lett; 1987 May; 215(1):171-4. PubMed ID: 3552732
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Think like a bacterium. Conference on bacterial neural networks.
    Golden SS
    EMBO Rep; 2003 Jan; 4(1):15-7. PubMed ID: 12524513
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ultrasensitivity and fluctuations in the Barkai-Leibler model of chemotaxis receptors in Escherichia coli.
    Roy U; Gopalakrishnan M
    PLoS One; 2017; 12(4):e0175309. PubMed ID: 28406996
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The AppA and PpsR proteins from Rhodobacter sphaeroides can establish a redox-dependent signal chain but fail to transmit blue-light signals in other bacteria.
    Jäger A; Braatsch S; Haberzettl K; Metz S; Osterloh L; Han Y; Klug G
    J Bacteriol; 2007 Mar; 189(6):2274-82. PubMed ID: 17209035
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Two chemosensory operons of Rhodobacter sphaeroides are regulated independently by sigma 28 and sigma 54.
    Martin AC; Gould M; Byles E; Roberts MA; Armitage JP
    J Bacteriol; 2006 Nov; 188(22):7932-40. PubMed ID: 16963577
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The cytochrome bc1 complex of Rhodobacter sphaeroides can restore cytochrome c2-independent photosynthetic growth to a Rhodobacter capsulatus mutant lacking cytochrome bc1.
    Davidson E; Prince RC; Haith CE; Daldal F
    J Bacteriol; 1989 Nov; 171(11):6059-68. PubMed ID: 2553670
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides.
    Ward MJ; Harrison DM; Ebner MJ; Armitage JP
    Mol Microbiol; 1995 Oct; 18(1):115-21. PubMed ID: 8596451
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Analysis of the FnrL regulon in Rhodobacter capsulatus reveals limited regulon overlap with orthologues from Rhodobacter sphaeroides and Escherichia coli.
    Kumka JE; Bauer CE
    BMC Genomics; 2015 Nov; 16():895. PubMed ID: 26537891
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Transcriptome and physiological responses to hydrogen peroxide of the facultatively phototrophic bacterium Rhodobacter sphaeroides.
    Zeller T; Moskvin OV; Li K; Klug G; Gomelsky M
    J Bacteriol; 2005 Nov; 187(21):7232-42. PubMed ID: 16237007
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Logarithmic sensing in Escherichia coli bacterial chemotaxis.
    Kalinin YV; Jiang L; Tu Y; Wu M
    Biophys J; 2009 Mar; 96(6):2439-48. PubMed ID: 19289068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.