These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 2329355)

  • 1. Movement-related phasic muscle activation. I. Relations with temporal profile of movement.
    Brown SH; Cooke JD
    J Neurophysiol; 1990 Mar; 63(3):455-64. PubMed ID: 2329355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern.
    Cooke JD; Brown SH
    J Neurophysiol; 1990 Mar; 63(3):465-72. PubMed ID: 2329356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement-related phasic muscle activation. III. The duration of phasic agonist activity initiating movement.
    Cooke JD; Brown SH
    Exp Brain Res; 1994; 99(3):473-82. PubMed ID: 7957727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-joint rapid arm movements in normal subjects and in patients with motor disorders.
    Berardelli A; Hallett M; Rothwell JC; Agostino R; Manfredi M; Thompson PD; Marsden CD
    Brain; 1996 Apr; 119 ( Pt 2)():661-74. PubMed ID: 8800955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement and electromyographic disorders associated with cerebellar dysmetria.
    Flament D; Hore J
    J Neurophysiol; 1986 Jun; 55(6):1221-33. PubMed ID: 3734856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Braking of fast and accurate elbow flexions in the monkey.
    Flament D; Hore J; Vilis T
    J Physiol; 1984 Apr; 349():195-202. PubMed ID: 6737291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Startle reveals independent preparation and initiation of triphasic EMG burst components in targeted ballistic movements.
    Forgaard CJ; Maslovat D; Carlsen AN; Chua R; Franks IM
    J Neurophysiol; 2013 Nov; 110(9):2129-39. PubMed ID: 23926044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal modulations of agonist and antagonist muscle activities accompanying improved performance of ballistic movements.
    Liang N; Yamashita T; Ni Z; Takahashi M; Murakami T; Yahagi S; Kasai T
    Hum Mov Sci; 2008 Feb; 27(1):12-28. PubMed ID: 17936390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between EMG patterns and kinematic properties for flexion movements at the human wrist.
    Mustard BE; Lee RG
    Exp Brain Res; 1987; 66(2):247-56. PubMed ID: 3595772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duration of the first agonist EMG burst in ballistic arm movements.
    Berardelli A; Rothwell JC; Day BL; Kachi T; Marsden CD
    Brain Res; 1984 Jun; 304(1):183-7. PubMed ID: 6744037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor unit activity during human single joint movements.
    Garland SJ; Cooke JD; Miller KJ; Ohtsuki T; Ivanova T
    J Neurophysiol; 1996 Sep; 76(3):1982-90. PubMed ID: 8890308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplitude- and instruction-dependent modulation of movement-related electromyogram activity in humans.
    Brown SH; Cooke JD
    J Physiol; 1981 Jul; 316():97-107. PubMed ID: 7320884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between EMG activation patterns and kinematic properties of aimed arm movements.
    Gielen CC; van den Oosten K; Pull ter Gunne F
    J Mot Behav; 1985 Dec; 17(4):421-42. PubMed ID: 15140674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two components of muscle activation: scaling with the speed of arm movement.
    Flanders M; Herrmann U
    J Neurophysiol; 1992 Apr; 67(4):931-43. PubMed ID: 1588392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial agonist burst duration depends on movement amplitude.
    Brown SH; Cooke JD
    Exp Brain Res; 1984; 55(3):523-7. PubMed ID: 6468556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of motor output in slow finger movements in man.
    Vallbo AB; Wessberg J
    J Physiol; 1993 Sep; 469():673-91. PubMed ID: 8271223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of expected perturbations on the velocity control of fast arm abduction movements.
    Pantaleo T; Benvenuti F; Bandinelli S; Mencarelli MA; Baroni A
    Exp Neurol; 1988 Sep; 101(3):313-26. PubMed ID: 3416977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The temporal structure of vertical arm movements.
    Gaveau J; Papaxanthis C
    PLoS One; 2011; 6(7):e22045. PubMed ID: 21765935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The control of rapid limb movement in the cat. III. Agonist - antagonist coupling.
    Ghez C; Martin JH
    Exp Brain Res; 1982; 45(1-2):115-25. PubMed ID: 7056317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of simple arm movements in elderly humans.
    Darling WG; Cooke JD; Brown SH
    Neurobiol Aging; 1989; 10(2):149-57. PubMed ID: 2725810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.