These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23293598)

  • 1. Learned graphical models for probabilistic planning provide a new class of movement primitives.
    Rückert EA; Neumann G; Toussaint M; Maass W
    Front Comput Neurosci; 2012; 6():97. PubMed ID: 23293598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems.
    Rückert E; d'Avella A
    Front Comput Neurosci; 2013; 7():138. PubMed ID: 24146647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging Dynamical Systems and Optimal Trajectory Approaches to Speech Motor Control With Dynamic Movement Primitives.
    Parrell B; Lammert AC
    Front Psychol; 2019; 10():2251. PubMed ID: 31681077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human skill knowledge guided global trajectory policy reinforcement learning method.
    Zang Y; Wang P; Zha F; Guo W; Li C; Sun L
    Front Neurorobot; 2024; 18():1368243. PubMed ID: 38559491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making the Coupled Gaussian Process Dynamical Model Modular and Scalable with Variational Approximations.
    Velychko D; Knopp B; Endres D
    Entropy (Basel); 2018 Sep; 20(10):. PubMed ID: 33265813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation.
    Radac MB; Precup RE; Petriu EM
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2925-38. PubMed ID: 26285221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic primitives of motor behavior.
    Hogan N; Sternad D
    Biol Cybern; 2012 Dec; 106(11-12):727-39. PubMed ID: 23124919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MACOP modular architecture with control primitives.
    Waegeman T; Hermans M; Schrauwen B
    Front Comput Neurosci; 2013; 7():99. PubMed ID: 23888140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase portraits as movement primitives for fast humanoid robot control.
    Maeda G; Koç O; Morimoto J
    Neural Netw; 2020 Sep; 129():109-122. PubMed ID: 32505964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Probabilistic Movement Primitives in Analyzing Human Motion Differences Under Transcranial Current Stimulation.
    Xue H; Herzog R; Berger TM; Bäumer T; Weissbach A; Rueckert E
    Front Robot AI; 2021; 8():721890. PubMed ID: 34595209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peg-in-hole assembly skill imitation learning method based on ProMPs under task geometric representation.
    Zang Y; Wang P; Zha F; Guo W; Zheng C; Sun L
    Front Neurorobot; 2023; 17():1320251. PubMed ID: 38023454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor primitives--new data and future questions.
    Giszter SF
    Curr Opin Neurobiol; 2015 Aug; 33():156-65. PubMed ID: 25912883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor skill acquisition during a balance task as a process of optimization of motor primitives.
    de Lemos Fonseca M; Daneault JF; Vergara-Diaz G; Quixadá AP; Souza de Oliveira E Torres ÂF; Pondé de Sena E; Bomfim Cruz Vieira JP; Bigogno Reis Cazeta B; Sotero Dos Santos V; da Cruz Figueiredo T; Peña N; Bonato P; Vivas Miranda JG
    Eur J Neurosci; 2020 May; 51(10):2082-2094. PubMed ID: 31846518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affine differential geometry and smoothness maximization as tools for identifying geometric movement primitives.
    Polyakov F
    Biol Cybern; 2017 Feb; 111(1):5-24. PubMed ID: 27822891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-Synchronized Learning of Periodic Compliant Movement Primitives (P-CMPs).
    Petrič T
    Front Neurorobot; 2020; 14():599889. PubMed ID: 33281594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training of deep neural networks for the generation of dynamic movement primitives.
    Pahič R; Ridge B; Gams A; Morimoto J; Ude A
    Neural Netw; 2020 Jul; 127():121-131. PubMed ID: 32339807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning and control of exploration primitives.
    Gordon G; Fonio E; Ahissar E
    J Comput Neurosci; 2014 Oct; 37(2):259-80. PubMed ID: 24796479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.