These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23293598)

  • 21. Dynamical movement primitives: learning attractor models for motor behaviors.
    Ijspeert AJ; Nakanishi J; Hoffmann H; Pastor P; Schaal S
    Neural Comput; 2013 Feb; 25(2):328-73. PubMed ID: 23148415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery and recognition of motion primitives in human activities.
    Sanzari M; Ntouskos V; Pirri F
    PLoS One; 2019; 14(4):e0214499. PubMed ID: 30933990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extraction of motor primitive in consideration of arm posture, movement direction and velocity using Hidden Markov Model.
    Lee J; Sato M; Wada Y; Koike Y
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():4385-8. PubMed ID: 17281207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autonomous Robots for Space: Trajectory Learning and Adaptation Using Imitation.
    Ashith Shyam RB; Hao Z; Montanaro U; Dixit S; Rathinam A; Gao Y; Neumann G; Fallah S
    Front Robot AI; 2021; 8():638849. PubMed ID: 34017860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex Upper-Limb Movements Are Generated by Combining Motor Primitives that Scale with the Movement Size.
    Miranda JGV; Daneault JF; Vergara-Diaz G; Torres ÂFSOE; Quixadá AP; Fonseca ML; Vieira JPBC; Dos Santos VS; da Figueiredo TC; Pinto EB; Peña N; Bonato P
    Sci Rep; 2018 Aug; 8(1):12918. PubMed ID: 30150687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives.
    Song C; Liu G; Zhang X; Zang X; Xu C; Zhao J
    ISA Trans; 2020 Feb; 97():325-335. PubMed ID: 31395285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Safe Robot Trajectory Control Using Probabilistic Movement Primitives and Control Barrier Functions.
    Davoodi M; Iqbal A; Cloud JM; Beksi WJ; Gans NR
    Front Robot AI; 2022; 9():772228. PubMed ID: 35368435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A framework to identify structured behavioral patterns within rodent spatial trajectories.
    Donnarumma F; Prevete R; Maisto D; Fuscone S; Irvine EM; van der Meer MAA; Kemere C; Pezzulo G
    Sci Rep; 2021 Jan; 11(1):468. PubMed ID: 33432100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A User Study on Robot Skill Learning Without a Cost Function: Optimization of Dynamic Movement Primitives via Naive User Feedback.
    Vollmer AL; Hemion NJ
    Front Robot AI; 2018; 5():77. PubMed ID: 33500956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rats' learning of a new motor skill: insight into the evolution of motor sequence learning.
    Hermer-Vazquez L; Moshtagh N
    Behav Processes; 2009 May; 81(1):50-9. PubMed ID: 19429196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hopf Bifurcations in Complex Multiagent Activity: The Signature of Discrete to Rhythmic Behavioral Transitions.
    Patil G; Nalepka P; Kallen RW; Richardson MJ
    Brain Sci; 2020 Aug; 10(8):. PubMed ID: 32784867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning of action through adaptive combination of motor primitives.
    Thoroughman KA; Shadmehr R
    Nature; 2000 Oct; 407(6805):742-7. PubMed ID: 11048720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assisting Movement Training and Execution With Visual and Haptic Feedback.
    Ewerton M; Rother D; Weimar J; Kollegger G; Wiemeyer J; Peters J; Maeda G
    Front Neurorobot; 2018; 12():24. PubMed ID: 29896096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of synergies arising from a theory of optimal motor behavior.
    Chhabra M; Jacobs RA
    Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How is a motor skill learned? Change and invariance at the levels of task success and trajectory control.
    Shmuelof L; Krakauer JW; Mazzoni P
    J Neurophysiol; 2012 Jul; 108(2):578-94. PubMed ID: 22514286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Hybrid Framework for Understanding and Predicting Human Reaching Motions.
    Oguz OS; Zhou Z; Wollherr D
    Front Robot AI; 2018; 5():27. PubMed ID: 33500914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning multivariate distributions by competitive assembly of marginals.
    Sánchez-Vega F; Younes L; Geman D
    IEEE Trans Pattern Anal Mach Intell; 2013 Feb; 35(2):398-410. PubMed ID: 22529323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward a unifying framework for the modeling and identification of motor primitives.
    Chiovetto E; Salatiello A; d'Avella A; Giese MA
    Front Comput Neurosci; 2022; 16():926345. PubMed ID: 36172054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.