BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23293658)

  • 1. Thermoresponsive nanocomposite double network hydrogels.
    Fei R; George JT; Park J; Grunlan MA
    Soft Matter; 2012 Jan; 8(2):481-487. PubMed ID: 23293658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-strong thermoresponsive double network hydrogels.
    Fei R; George JT; Park J; Means AK; Grunlan MA
    Soft Matter; 2013 Mar; 9(10):2912-2919. PubMed ID: 33335560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoresponsive Nanocomposite Hydrogels: Transparency, Rapid Deswelling and Cell Release.
    Hou Y; Fei R; Burkes JC; Lee SD; Munoz-Pinto D; Hahn MS; Grunlan MA
    J Biomater Tissue Eng; 2011 Jun; 1(1):. PubMed ID: 24377059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoresponsive Double Network Hydrogels with Exceptional Compressive Mechanical Properties.
    Means AK; Ehrhardt DA; Whitney LV; Grunlan MA
    Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28895241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoresponsive double network micropillared hydrogels for controlled cell release.
    Fei R; Hou H; Munoz-Pinto D; Han A; Hahn MS; Grunlan MA
    Macromol Biosci; 2014 Sep; 14(9):1346-52. PubMed ID: 24956117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoresponsive nanocomposite hydrogels with cell-releasing behavior.
    Hou Y; Matthews AR; Smitherman AM; Bulick AS; Hahn MS; Hou H; Han A; Grunlan MA
    Biomaterials; 2008 Aug; 29(22):3175-84. PubMed ID: 18455788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.
    Yu R; Zheng S
    J Biomater Sci Polym Ed; 2011; 22(17):2305-24. PubMed ID: 21092421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superfast and Reversible Thermoresponse of Poly( N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges.
    Pan Y; Li B; Liu Z; Yang Z; Yang X; Shi K; Li W; Peng C; Wang W; Ji X
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32747-32759. PubMed ID: 30157634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers.
    Kim S; Lee K; Cha C
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1698-1711. PubMed ID: 27573586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid deswelling and reswelling response of poly(N-isopropylacrylamide) hydrogels via formation of interpenetrating polymer networks with polyhedral oligomeric silsesquioxane-capped poly(ethylene oxide) amphiphilic telechelics.
    Zeng K; Wang L; Zheng S
    J Phys Chem B; 2009 Sep; 113(35):11831-40. PubMed ID: 19670841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Cleaning, Thermoresponsive P (NIPAAm-co-AMPS) Double Network Membranes for Implanted Glucose Biosensors.
    Fei R; Means AK; Abraham AA; Locke AK; Coté GL; Grunlan MA
    Macromol Mater Eng; 2016 Aug; 301(8):935-943. PubMed ID: 28529447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels.
    Gil ES; Hudson SM
    Biomacromolecules; 2007 Jan; 8(1):258-64. PubMed ID: 17206815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of partially biodegradable and thermosensitive hydrogel.
    Zhang XZ; Sun GM; Wu DQ; Chu CC
    J Mater Sci Mater Med; 2004 Aug; 15(8):865-75. PubMed ID: 15477738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels.
    Li Z; Shen J; Ma H; Lu X; Shi M; Li N; Ye M
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):1951-7. PubMed ID: 23498217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(N-isopropylacrylamide) telechelics: synthesis and behavior of physical hydrogels.
    Wang L; Zeng K; Zheng S
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):898-909. PubMed ID: 21381657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a self-cleaning sensor membrane for implantable biosensors.
    Gant RM; Hou Y; Grunlan MA; Coté GL
    J Biomed Mater Res A; 2009 Sep; 90(3):695-701. PubMed ID: 18563815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-cleaning membrane to extend the lifetime of an implanted glucose biosensor.
    Abraham AA; Fei R; Coté GL; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12832-8. PubMed ID: 24304009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors.
    Gant RM; Abraham AA; Hou Y; Cummins BM; Grunlan MA; Coté GL
    Acta Biomater; 2010 Aug; 6(8):2903-10. PubMed ID: 20123136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of cold treatment on properties of temperature-sensitive poly(N-isopropylacrylamide) hydrogels.
    Zhang XZ; Yang YY; Chung TS
    J Colloid Interface Sci; 2002 Feb; 246(1):105-11. PubMed ID: 16290390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.