These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23293678)

  • 1. Non-Ewald methods: theory and applications to molecular systems.
    Fukuda I; Nakamura H
    Biophys Rev; 2012 Sep; 4(3):161-170. PubMed ID: 23293678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations Accelerated by GPU for Biological Macromolecules with a Non-Ewald Scheme for Electrostatic Interactions.
    Mashimo T; Fukunishi Y; Kamiya N; Takano Y; Fukuda I; Nakamura H
    J Chem Theory Comput; 2013 Dec; 9(12):5599-609. PubMed ID: 26592294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-equilibrium simulations of thermally induced electric fields in water.
    Wirnsberger P; Fijan D; Šarić A; Neumann M; Dellago C; Frenkel D
    J Chem Phys; 2016 Jun; 144(22):224102. PubMed ID: 27305991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the Wolf method using the Stillinger-Lovett sum rules: From strong electrolytes to weakly charged colloidal dispersions.
    Falcón-González JM; Contreras-Aburto C; Lara-Peña M; Heinen M; Avendaño C; Gil-Villegas A; Castañeda-Priego R
    J Chem Phys; 2020 Dec; 153(23):234901. PubMed ID: 33353329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-multipole summation method for efficiently estimating electrostatic interactions in molecular system.
    Fukuda I
    J Chem Phys; 2013 Nov; 139(17):174107. PubMed ID: 24206287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Simulation of Vapor-Liquid Equilibria Using the Wolf Method for Electrostatic Interactions.
    Hens R; Vlugt TJH
    J Chem Eng Data; 2018 Apr; 63(4):1096-1102. PubMed ID: 30258248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Ewald methods for evaluating the electrostatic interactions of charge systems: similarity and difference.
    Fukuda I; Nakamura H
    Biophys Rev; 2022 Dec; 14(6):1315-1340. PubMed ID: 36659982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of the zero-multipole summation method in modern molecular dynamics software.
    Sakuraba S; Fukuda I
    J Comput Chem; 2018 Jul; 39(20):1551-1560. PubMed ID: 29727031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ENUF method-Ewald summation based on nonuniform fast Fourier transform: Implementation, parallelization, and application.
    Yang SC; Li B; Zhu YL; Laaksonen A; Wang YL
    J Comput Chem; 2020 Oct; 41(27):2316-2335. PubMed ID: 32808686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Screening Functions as Cutoff-Based Alternatives to Ewald Summation in Molecular Dynamics Simulations Using Polarizable Force Fields.
    Vatamanu J; Borodin O; Bedrov D
    J Chem Theory Comput; 2018 Feb; 14(2):768-783. PubMed ID: 29294281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct summation of dipole-dipole interactions using the Wolf formalism.
    Stenqvist B; Trulsson M; Abrikosov AI; Lund M
    J Chem Phys; 2015 Jul; 143(1):014109. PubMed ID: 26156467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics.
    Fennell CJ; Gezelter JD
    J Chem Phys; 2006 Jun; 124(23):234104. PubMed ID: 16821904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations.
    Nam K; Gao J; York DM
    J Chem Theory Comput; 2005 Jan; 1(1):2-13. PubMed ID: 26641110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations.
    Hansen JS; Schrøder TB; Dyre JC
    J Phys Chem B; 2012 May; 116(19):5738-43. PubMed ID: 22497264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ewald summation approach to potential models of aqueous electrolytes involving gaussian charges and induced dipoles: formal and simulation results.
    Chialvo AA; Vlcek L
    J Phys Chem B; 2014 Nov; 118(47):13658-70. PubMed ID: 25363893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polarizable point dipoles method with electrostatic damping: implementation on a model system.
    Sala J; Guàrdia E; Masia M
    J Chem Phys; 2010 Dec; 133(23):234101. PubMed ID: 21186852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic charges derived from electrostatic potentials for molecular and periodic systems.
    Chen DL; Stern AC; Space B; Johnson JK
    J Phys Chem A; 2010 Sep; 114(37):10225-33. PubMed ID: 20795694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Modified Shifted Force Approach to the Wolf Summation.
    Waibel C; Feinler MS; Gross J
    J Chem Theory Comput; 2019 Jan; 15(1):572-583. PubMed ID: 30418767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extension of Wolf's method for the treatment of electrostatic interactions: application to liquid water and aqueous solutions.
    Fanourgakis GS
    J Phys Chem B; 2015 Feb; 119(5):1974-85. PubMed ID: 25611255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.