These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 23293954)
21. Visualizing auxin transport routes in Arabidopsis leaf primordia. Marcos D; Berleth T Methods Mol Biol; 2009; 495():11-20. PubMed ID: 19085150 [TBL] [Abstract][Full Text] [Related]
22. A molecular framework for auxin-mediated initiation of flower primordia. Yamaguchi N; Wu MF; Winter CM; Berns MC; Nole-Wilson S; Yamaguchi A; Coupland G; Krizek BA; Wagner D Dev Cell; 2013 Feb; 24(3):271-82. PubMed ID: 23375585 [TBL] [Abstract][Full Text] [Related]
23. Characterization of a novel putative zinc finger gene MIF1: involvement in multiple hormonal regulation of Arabidopsis development. Hu W; Ma H Plant J; 2006 Feb; 45(3):399-422. PubMed ID: 16412086 [TBL] [Abstract][Full Text] [Related]
24. The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis. Robles P; Fleury D; Candela H; Cnops G; Alonso-Peral MM; Anami S; Falcone A; Caldana C; Willmitzer L; Ponce MR; Van Lijsebettens M; Micol JL Plant Physiol; 2010 Mar; 152(3):1357-72. PubMed ID: 20044451 [TBL] [Abstract][Full Text] [Related]
25. CRM1/BIG-mediated auxin action regulates Arabidopsis inflorescence development. Yamaguchi N; Suzuki M; Fukaki H; Morita-Terao M; Tasaka M; Komeda Y Plant Cell Physiol; 2007 Sep; 48(9):1275-90. PubMed ID: 17652113 [TBL] [Abstract][Full Text] [Related]
26. AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Wang S; Tiwari SB; Hagen G; Guilfoyle TJ Plant Cell; 2005 Jul; 17(7):1979-93. PubMed ID: 15923351 [TBL] [Abstract][Full Text] [Related]
27. The CIN-TCP transcription factors promote commitment to differentiation in Arabidopsis leaf pavement cells via both auxin-dependent and independent pathways. Challa KR; Rath M; Nath U PLoS Genet; 2019 Feb; 15(2):e1007988. PubMed ID: 30742619 [TBL] [Abstract][Full Text] [Related]
28. incurvata13, a novel allele of AUXIN RESISTANT6, reveals a specific role for auxin and the SCF complex in Arabidopsis embryogenesis, vascular specification, and leaf flatness. Esteve-Bruna D; Pérez-Pérez JM; Ponce MR; Micol JL Plant Physiol; 2013 Mar; 161(3):1303-20. PubMed ID: 23319550 [TBL] [Abstract][Full Text] [Related]
29. Ectopic divisions in vascular and ground tissues of Arabidopsis thaliana result in distinct leaf venation defects. Wenzel CL; Marrison J; Mattsson J; Haseloff J; Bougourd SM J Exp Bot; 2012 Sep; 63(14):5351-64. PubMed ID: 22936832 [TBL] [Abstract][Full Text] [Related]
30. The ASYMMETRIC LEAVES Complex Employs Multiple Modes of Regulation to Affect Adaxial-Abaxial Patterning and Leaf Complexity. Husbands AY; Benkovics AH; Nogueira FT; Lodha M; Timmermans MC Plant Cell; 2015 Dec; 27(12):3321-35. PubMed ID: 26589551 [TBL] [Abstract][Full Text] [Related]
31. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. van Rongen M; Bennett T; Ticchiarelli F; Leyser O PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619 [TBL] [Abstract][Full Text] [Related]
32. The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form. Krizek BA; Blakley IC; Ho YY; Freese N; Loraine AE Plant J; 2020 Jul; 103(2):752-768. PubMed ID: 32279407 [TBL] [Abstract][Full Text] [Related]
33. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Hou K; Wu W; Gan SS Plant Physiol; 2013 Feb; 161(2):1002-9. PubMed ID: 23250625 [TBL] [Abstract][Full Text] [Related]
34. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. Karampelias M; Neyt P; De Groeve S; Aesaert S; Coussens G; Rolčík J; Bruno L; De Winne N; Van Minnebruggen A; Van Montagu M; Ponce MR; Micol JL; Friml J; De Jaeger G; Van Lijsebettens M Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2768-73. PubMed ID: 26888284 [TBL] [Abstract][Full Text] [Related]
35. Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium. Ståldal V; Sohlberg JJ; Eklund DM; Ljung K; Sundberg E New Phytol; 2008; 180(4):798-808. PubMed ID: 18811619 [TBL] [Abstract][Full Text] [Related]
36. Spatiotemporal relationship between auxin dynamics and hydathode development in Yagi H; Tamura K; Matsushita T; Shimada T Plant Signal Behav; 2021 Dec; 16(12):1989216. PubMed ID: 34696695 [TBL] [Abstract][Full Text] [Related]
37. SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. Li LC; Qin GJ; Tsuge T; Hou XH; Ding MY; Aoyama T; Oka A; Chen Z; Gu H; Zhao Y; Qu LJ New Phytol; 2008; 179(3):751-764. PubMed ID: 18557819 [TBL] [Abstract][Full Text] [Related]
38. The shady side of leaf development: the role of the REVOLUTA/KANADI1 module in leaf patterning and auxin-mediated growth promotion. Merelo P; Paredes EB; Heisler MG; Wenkel S Curr Opin Plant Biol; 2017 Feb; 35():111-116. PubMed ID: 27918939 [TBL] [Abstract][Full Text] [Related]
39. The origin of the diversity of leaf venation pattern. Fujita H; Mochizuki A Dev Dyn; 2006 Oct; 235(10):2710-21. PubMed ID: 16894601 [TBL] [Abstract][Full Text] [Related]
40. Auxin and the Arabidopsis thaliana gynoecium. Larsson E; Franks RG; Sundberg E J Exp Bot; 2013 Jun; 64(9):2619-27. PubMed ID: 23585670 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]