These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 23294392)

  • 101. Probing the dynamics of turbid colloidal suspensions using differential dynamic microscopy.
    Nixon-Luke R; Arlt J; Poon WCK; Bryant G; Martinez VA
    Soft Matter; 2022 Mar; 18(9):1858-1867. PubMed ID: 35171181
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Validating the assumption to the interference approximation by use of measurements of absorption efficiency and hindered scattering in dense suspensions.
    Huang Y; Sevick-Muraca EM
    Appl Opt; 2004 Feb; 43(4):814-9. PubMed ID: 14960075
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Dynamical perspective of the freezing transition of a suspension of hard spheres from the velocity autocorrelation function.
    van Megen W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):020503. PubMed ID: 16605316
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Dynamic arrest in charged colloidal systems exhibiting large-scale structural heterogeneities.
    Haro-Pérez C; Rojas-Ochoa LF; Castañeda-Priego R; Quesada-Pérez M; Callejas-Fernández J; Hidalgo-Alvarez R; Trappe V
    Phys Rev Lett; 2009 Jan; 102(1):018301. PubMed ID: 19257245
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Cage dynamics leads to double relaxation of the intermediate scattering function in a binary colloidal system.
    Shireen Z; Babu SB
    Soft Matter; 2018 Nov; 14(45):9271-9281. PubMed ID: 30403250
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Gas-solid coexistence in highly charged colloidal suspensions.
    Mohanty PS; Tata BV; Toyotama A; Sawada T
    Langmuir; 2005 Dec; 21(25):11678-83. PubMed ID: 16316100
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Characterizing concentrated, multiply scattering, and actively driven fluorescent systems with confocal differential dynamic microscopy.
    Lu PJ; Giavazzi F; Angelini TE; Zaccarelli E; Jargstorff F; Schofield AB; Wilking JN; Romanowsky MB; Weitz DA; Cerbino R
    Phys Rev Lett; 2012 May; 108(21):218103. PubMed ID: 23003305
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Beyond diffusion-limited aggregation kinetics in microparticle suspensions.
    Erb RM; Krebs MD; Alsberg E; Samanta B; Rotello VM; Yellen BB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051402. PubMed ID: 20364980
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Crystal structure of highly concentrated, ionic microgel suspensions studied by small-angle x-ray scattering.
    Gasser U; Fernandez-Nieves A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):052401. PubMed ID: 20866283
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Active colloidal suspensions exhibit polar order under gravity.
    Enculescu M; Stark H
    Phys Rev Lett; 2011 Jul; 107(5):058301. PubMed ID: 21867100
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Near-wall dynamics of concentrated hard-sphere suspensions: comparison of evanescent wave DLS experiments, virial approximation and simulations.
    Liu Y; Bławzdziewicz J; Cichocki B; Dhont JK; Lisicki M; Wajnryb E; Young YN; Lang PR
    Soft Matter; 2015 Oct; 11(37):7316-27. PubMed ID: 26264420
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Second harmonic light scattering from the surface of colloidal objects: theory and applications.
    Gonella G; Dai HL
    Langmuir; 2014 Mar; 30(10):2588-99. PubMed ID: 24171670
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Short-time dynamics of colloidal particles confined between two walls.
    Santana-Solano J; Arauz-Lara JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021406. PubMed ID: 11863522
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Effects of shear and walls on the diffusion of colloids in microchannels.
    Ghosh S; Mugele F; Duits MH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052305. PubMed ID: 26066175
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Sol-Gel transition of concentrated colloidal suspensions.
    Romer S; Scheffold F; Schurtenberger P
    Phys Rev Lett; 2000 Dec; 85(23):4980-3. PubMed ID: 11102166
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Short-time diffusivity of dicolloids.
    Panczyk MM; Wagner NJ; Furst EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062311. PubMed ID: 25019780
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Effective screening of hydrodynamic interactions in charged colloidal suspensions.
    Riese DO; Wegdam GH; Vos WL; Sprik R; Fenistein D; Bongaerts JH; Grübel G
    Phys Rev Lett; 2000 Dec; 85(25):5460-3. PubMed ID: 11136021
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Anomalous Dynamics of Concentrated Silica-PNIPAm Nanogels.
    Frenzel L; Lehmkühler F; Lokteva I; Narayanan S; Sprung M; Grübel G
    J Phys Chem Lett; 2019 Sep; 10(17):5231-5236. PubMed ID: 31433650
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Concentration fluctuations in the binary mixture hexane-nitrobenzene with static and dynamic x-ray scattering.
    Dufresne EM; Nurushev T; Clarke R; Dierker SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061507. PubMed ID: 12188732
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths.
    Gapinski J; Nägele G; Patkowski A
    J Chem Phys; 2014 Sep; 141(12):124505. PubMed ID: 25273449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.