These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23294768)

  • 1. Overview of fluorescence glucose sensing: a technology with a bright future.
    Klonoff DC
    J Diabetes Sci Technol; 2012 Nov; 6(6):1242-50. PubMed ID: 23294768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose response of near-infrared alginate-based microsphere sensors under dynamic reversible conditions.
    Chaudhary A; Harma H; Hanninen P; McShane MJ; Srivastava R
    Diabetes Technol Ther; 2011 Aug; 13(8):827-35. PubMed ID: 21568749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Infrared Optical Nanosensors for Continuous Detection of Glucose.
    Le LV; Chendke GS; Gamsey S; Wisniewski N; Desai TA
    J Diabetes Sci Technol; 2020 Mar; 14(2):204-211. PubMed ID: 31709808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence intensity- and lifetime-based glucose sensing using glucose/galactose-binding protein.
    Pickup JC; Khan F; Zhi ZL; Coulter J; Birch DJ
    J Diabetes Sci Technol; 2013 Jan; 7(1):62-71. PubMed ID: 23439161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring.
    Ballerstadt R; Evans C; Gowda A; McNichols R
    Diabetes Technol Ther; 2006 Jun; 8(3):296-311. PubMed ID: 16800751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-based glucose sensors.
    Pickup JC; Hussain F; Evans ND; Rolinski OJ; Birch DJ
    Biosens Bioelectron; 2005 Jun; 20(12):2555-65. PubMed ID: 15854825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis.
    Kvist PH; Iburg T; Aalbaek B; Gerstenberg M; Schoier C; Kaastrup P; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Oct; 8(5):546-59. PubMed ID: 17037969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implanted electrochemical glucose sensors for the management of diabetes.
    Heller A
    Annu Rev Biomed Eng; 1999; 1():153-75. PubMed ID: 11701486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration.
    Updike SJ; Shults MC; Gilligan BJ; Rhodes RK
    Diabetes Care; 2000 Feb; 23(2):208-14. PubMed ID: 10868833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of boronic acid based fluorescent glucose sensors.
    Kawanishi T; Romey MA; Zhu PC; Holody MZ; Shinkai S
    J Fluoresc; 2004 Sep; 14(5):499-512. PubMed ID: 15617258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein.
    Saxl T; Khan F; Matthews DR; Zhi ZL; Rolinski O; Ameer-Beg S; Pickup J
    Biosens Bioelectron; 2009 Jul; 24(11):3229-34. PubMed ID: 19442507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous glucose sensing: future technology developments.
    Brauker J
    Diabetes Technol Ther; 2009 Jun; 11 Suppl 1():S25-36. PubMed ID: 19469675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The design and development of fluorescent nano-optodes for in vivo glucose monitoring.
    Balaconis MK; Billingsley K; Dubach MJ; Cash KJ; Clark HA
    J Diabetes Sci Technol; 2011 Jan; 5(1):68-75. PubMed ID: 21303627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo.
    Updike SJ; Shults MC; Rhodes RK; Gilligan BJ; Luebow JO; von Heimburg D
    ASAIO J; 1994; 40(2):157-63. PubMed ID: 8003752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo glucose monitoring: the clinical reality and the promise.
    Pickup JC; Hussain F; Evans ND; Sachedina N
    Biosens Bioelectron; 2005 Apr; 20(10):1897-902. PubMed ID: 15741056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of subcutaneously implanted glucose sensors for continuous monitoring.
    Gerritsen M; Jansen JA; Lutterman JA
    Neth J Med; 1999 Apr; 54(4):167-79. PubMed ID: 10218387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous glucose monitoring in interstitial fluid using glucose oxidase-based sensor compared to established blood glucose measurement in rats.
    Woderer S; Henninger N; Garthe CD; Kloetzer HM; Hajnsek M; Kamecke U; Gretz N; Kraenzlin B; Pill J
    Anal Chim Acta; 2007 Jan; 581(1):7-12. PubMed ID: 17386418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose sensors based on microcapsules containing an orange/red competitive binding resonance energy transfer assay.
    Chinnayelka S; McShane MJ
    Diabetes Technol Ther; 2006 Jun; 8(3):269-78. PubMed ID: 16800748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Smart tattoo" glucose biosensors and effect of coencapsulated anti-inflammatory agents.
    Srivastava R; Jayant RD; Chaudhary A; McShane MJ
    J Diabetes Sci Technol; 2011 Jan; 5(1):76-85. PubMed ID: 21303628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of subcutaneously-implanted glucose sensors for continuous glucose measurements in hyperglycemic pigs.
    Kvist PH; Bielecki M; Gerstenberg M; Rossmeisl C; Jensen HE; Rolin B; Hasselager E
    In Vivo; 2006; 20(2):195-203. PubMed ID: 16634519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.