These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 23295177)

  • 1. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China.
    Sun S; Wu P; Wang Y; Zhao X; Liu J; Zhang X
    Sci Total Environ; 2013 Feb; 444():498-507. PubMed ID: 23295177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.
    Liu J; Sun S; Wu P; Wang Y; Zhao X
    Sci Total Environ; 2015 Feb; 505():1174-81. PubMed ID: 25461115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.
    Liu X; Wang S; Xue H; Singh VP
    PLoS One; 2015; 10(10):e0139839. PubMed ID: 26439928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling resources use efficiency and its drivers for water transfer and grain production processes in pumping irrigation system.
    Cui S; Wu M; Huang X; Cao X
    Sci Total Environ; 2022 Apr; 818():151810. PubMed ID: 34813813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand.
    Shrestha S; Chapagain R; Babel MS
    Sci Total Environ; 2017 Dec; 599-600():689-699. PubMed ID: 28494294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal evolution characteristics and influencing factors of the crop water use efficiency in watersheds based on the water footprint.
    Yang Y; Gao H
    Environ Monit Assess; 2024 Jun; 196(7):620. PubMed ID: 38879715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China.
    Cao X; Wang Y; Wu P; Zhao X; Wang J
    Sci Total Environ; 2015 Oct; 529():10-20. PubMed ID: 26005745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial pattern characteristics of water footprint for maize production in Northeast China.
    Duan P; Qin L; Wang Y; He H
    J Sci Food Agric; 2016 Jan; 96(2):561-8. PubMed ID: 25654998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.
    Wang YB; Wu PT; Engel BA; Sun SK
    Sci Total Environ; 2014 Nov; 497-498():1-9. PubMed ID: 25112819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China.
    Liu J; Wu P; Wang Y; Zhao X; Sun S; Cao X
    J Sci Food Agric; 2014 Nov; 94(14):2992-3000. PubMed ID: 24615675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards quantification of the national water footprint in rice production of China: A first assessment from the perspectives of single-double rice.
    Zheng J; Wang W; Liu G; Ding Y; Cao X; Chen D; Engel BA
    Sci Total Environ; 2020 Oct; 739():140032. PubMed ID: 32758949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework.
    Xinchun C; Mengyang W; Xiangping G; Yalian Z; Yan G; Nan W; Weiguang W
    Sci Total Environ; 2017 Dec; 609():587-597. PubMed ID: 28763656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the link between crop production and mined groundwater irrigation in China.
    Grogan DS; Zhang F; Prusevich A; Lammers RB; Wisser D; Glidden S; Li C; Frolking S
    Sci Total Environ; 2015 Apr; 511():161-75. PubMed ID: 25544335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crop water footprints and their driving mechanisms show regional differences.
    Fang H; Wu N; Adamowski J; Wu M; Cao X
    Sci Total Environ; 2023 Dec; 904():167549. PubMed ID: 37802358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation and driving mechanism analysis of water footprint efficiency in crop cultivation in China.
    Cao X; Shu R; Ren J; Wu M; Huang X; Guo X
    Sci Total Environ; 2020 Jul; 725():138537. PubMed ID: 32304972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical and socioeconomic characterization of a water-stressed area and simulating agri-production estimates and land use planning under normal and extreme climatic events: a case study.
    Singh M; Kalra N; Chakraborty D; Kamble K; Barman D; Saha S; Mittal RB; Pandey S
    Environ Monit Assess; 2008 Jul; 142(1-3):97-108. PubMed ID: 18165905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental and socio-economic vulnerability of agricultural sector in Armenia.
    Melkonyan A
    Sci Total Environ; 2014 Aug; 488-489():333-42. PubMed ID: 24836389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New model for sustainable management of pressurized irrigation networks. Application to Bembézar MD irrigation district (Spain).
    Carrillo Cobo MT; Camacho Poyato E; Montesinos P; Rodríguez Díaz JA
    Sci Total Environ; 2014 Mar; 473-474():1-8. PubMed ID: 24361442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.