BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23295360)

  • 1. The interaction of natural background gamma radiation with depleted uranium micro-particles in the human body.
    Pattison JE
    J Radiol Prot; 2013 Mar; 33(1):187-98. PubMed ID: 23295360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body.
    Pattison JE; Hugtenburg RP; Green S
    J R Soc Interface; 2010 Apr; 7(45):603-11. PubMed ID: 19776147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo analysis of possible cell dose enhancement effects by uranium microparticles in photon fields.
    Eakins JS; Jansen JT; Tanner RJ
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):177-80. PubMed ID: 21148167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation dose assessment of exposure to depleted uranium.
    Li WB; Gerstmann UC; Höllriegl V; Szymczak W; Roth P; Hoeschen C; Oeh U
    J Expo Sci Environ Epidemiol; 2009 Jul; 19(5):502-14. PubMed ID: 18596688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluence to absorbed dose, effective dose and gray equivalent conversion coefficients for iron nuclei from 10 MeV to 1 TeV, calculated using Monte Carlo radiation transport code MCNPX 2.7.A.
    Copeland K; Parker DE; Friedberg W
    Radiat Prot Dosimetry; 2010 Mar; 138(4):353-62. PubMed ID: 19942625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation quality of photons in small and large receptors--a microdosimetric analysis.
    Chen J; Roos H; Kellerer AM
    Radiat Prot Dosimetry; 2006; 118(3):238-42. PubMed ID: 16286503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation.
    Tanner RJ; Eakins JS; Jansen JT; Harrison JD
    Radiat Prot Dosimetry; 2012 Aug; 151(2):323-43. PubMed ID: 22645386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation states of uranium in depleted uranium particles from Kuwait.
    Salbu B; Janssens K; Lind OC; Proost K; Gijsels L; Danesi PR
    J Environ Radioact; 2005; 78(2):125-35. PubMed ID: 15511555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the lung burden from exposure to aerosols of depleted uranium.
    Valdés M
    Radiat Prot Dosimetry; 2009 Feb; 134(1):23-9. PubMed ID: 19346527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.
    Krupka KM; Parkhurst MA; Gold K; Arey BW; Jenson ED; Guilmette RA
    Health Phys; 2009 Mar; 96(3):276-91. PubMed ID: 19204486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.
    Parkhurst MA; Cheng YS; Kenoyer JL; Traub RJ
    Health Phys; 2009 Mar; 96(3):251-65. PubMed ID: 19204484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCNPX alpha particle dose estimate to the skin tissue from a low-enriched uranium fuel fragment.
    Atanackovic J
    Radiat Prot Dosimetry; 2012 Jun; 150(2):223-30. PubMed ID: 22003183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between effective doses for voxel-based and stylized exposure models from photon and electron irradiation.
    Kramer R; Khoury HJ; Vieira JW
    Phys Med Biol; 2005 Nov; 50(21):5105-26. PubMed ID: 16237244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty analysis of doses from inhalation of depleted uranium.
    Puncher M; Bailey MR; Harrison JD
    Health Phys; 2008 Sep; 95(3):300-9. PubMed ID: 18695411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.
    Cheng YS; Kenoyer JL; Guilmette RA; Parkhurst MA
    Health Phys; 2009 Mar; 96(3):266-75. PubMed ID: 19204485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhalation and ingestion intakes with associated dose estimates for level II and level III personnel using Capstone study data.
    Szrom F; Falo GA; Lodde GM; Parkhurst MA; Daxon EG
    Health Phys; 2009 Mar; 96(3):363-79. PubMed ID: 19204492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha particles at energies of 10 MeV to 1 TeV: conversion coefficients for fluence-to-absorbed dose, effective dose, and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.A.
    Copeland K; Parker DE; Friedberg W
    Radiat Prot Dosimetry; 2010 Mar; 138(4):310-9. PubMed ID: 19933695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods used to calculate doses resulting from inhalation of Capstone depleted uranium aerosols.
    Miller G; Cheng YS; Traub RJ; Little TT; Guilmette RA
    Health Phys; 2009 Mar; 96(3):306-27. PubMed ID: 19204488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helions at energies of 10 MeV to 1 TeV: conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C.
    Copeland K; Parker DE; Friedberg W
    Radiat Prot Dosimetry; 2010 Dec; 142(2-4):99-109. PubMed ID: 21138924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tritons at energies of 10 MeV to 1 TeV: conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C.
    Copeland K; Parker DE; Friedberg W
    Radiat Prot Dosimetry; 2010 Dec; 142(2-4):110-9. PubMed ID: 21036809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.