These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 23295492)
1. Crystallization and preliminary X-ray diffraction analysis of the organophosphorus hydrolase OPHC2 from Pseudomonas pseudoalcaligenes. Gotthard G; Hiblot J; Gonzalez D; Chabrière E; Elias M Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jan; 69(Pt 1):73-6. PubMed ID: 23295492 [TBL] [Abstract][Full Text] [Related]
2. Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes. Gotthard G; Hiblot J; Gonzalez D; Elias M; Chabriere E PLoS One; 2013; 8(11):e77995. PubMed ID: 24223749 [TBL] [Abstract][Full Text] [Related]
3. Expression of organophosphorus hydrolase OPHC2 in Pichia pastoris: purification and characterization. Chu XY; Wu NF; Deng MJ; Tian J; Yao B; Fan YL Protein Expr Purif; 2006 Sep; 49(1):9-14. PubMed ID: 16769224 [TBL] [Abstract][Full Text] [Related]
4. Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Luo XJ; Kong XD; Zhao J; Chen Q; Zhou J; Xu JH Biotechnol Bioeng; 2014 Oct; 111(10):1920-30. PubMed ID: 24771278 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis of organophosphorus compounds by microbial enzymes. Theriot CM; Grunden AM Appl Microbiol Biotechnol; 2011 Jan; 89(1):35-43. PubMed ID: 20890601 [TBL] [Abstract][Full Text] [Related]
6. An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2. Chu XY; Tian J; Wu NF; Fan YL Appl Microbiol Biotechnol; 2010 Sep; 88(1):125-31. PubMed ID: 20607231 [TBL] [Abstract][Full Text] [Related]
7. Improving the thermostability of a methyl parathion hydrolase by adding the ionic bond on protein surface. Su Y; Tian J; Wang P; Chu X; Liu G; Wu N; Fan Y Appl Biochem Biotechnol; 2011 Oct; 165(3-4):989-97. PubMed ID: 21728027 [TBL] [Abstract][Full Text] [Related]
8. Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. Mee-Hie Cho C; Mulchandani A; Chen W Protein Eng Des Sel; 2006 Mar; 19(3):99-105. PubMed ID: 16423845 [TBL] [Abstract][Full Text] [Related]
9. Crystallization and preliminary X-ray diffraction analysis of the lactonase VmoLac from Vulcanisaeta moutnovskia. Hiblot J; Gotthard G; Champion C; Chabriere E; Elias M Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Nov; 69(Pt 11):1235-8. PubMed ID: 24192357 [TBL] [Abstract][Full Text] [Related]
10. Secretory expression of organophosphorus hydrolase OPHC2 in Yarrowia lipolytica Polg. Li M; Yu X; Wang F; Zhai C; Shen W; Yu X; Wang X; Ma L J Environ Sci Health B; 2015; 50(10):691-7. PubMed ID: 26273753 [TBL] [Abstract][Full Text] [Related]
11. Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase. Wang X; Wu N; Guo J; Chu X; Tian J; Yao B; Fan Y Biochem Biophys Res Commun; 2008 Jan; 365(3):453-8. PubMed ID: 17996731 [TBL] [Abstract][Full Text] [Related]
12. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase. Lyagin IV; Andrianova MS; Efremenko EN Appl Microbiol Biotechnol; 2016 Jul; 100(13):5829-38. PubMed ID: 26932546 [TBL] [Abstract][Full Text] [Related]
13. Enhancing Paraoxon Binding to Organophosphorus Hydrolase Active Site. El Khoury L; Mobley DL; Ye D; Rempe SB Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884430 [TBL] [Abstract][Full Text] [Related]
14. The quorum-quenching lactonase from Geobacillus caldoxylosilyticus: purification, characterization, crystallization and crystallographic analysis. Bergonzi C; Schwab M; Elias M Acta Crystallogr F Struct Biol Commun; 2016 Sep; 72(Pt 9):681-6. PubMed ID: 27599858 [TBL] [Abstract][Full Text] [Related]
15. Engineering the Organophosphorus Acid Anhydrolase Enzyme for Increased Catalytic Efficiency and Broadened Stereospecificity on Russian VX. Daczkowski CM; Pegan SD; Harvey SP Biochemistry; 2015 Oct; 54(41):6423-33. PubMed ID: 26418828 [TBL] [Abstract][Full Text] [Related]
16. Cloning, crystallization and preliminary X-ray study of XC1258, a CN-hydrolase superfamily protein from Xanthomonas campestris. Tsai YD; Chin KH; Shr HL; Gao FP; Lyu PC; Wang AH; Chou SH Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Oct; 62(Pt 10):999-1002. PubMed ID: 17012795 [TBL] [Abstract][Full Text] [Related]
17. Genetic engineering of Stenotrophomonas strain YC-1 to possess a broader substrate range for organophosphates. Yang C; Song C; Mulchandani A; Qiao C J Agric Food Chem; 2010 Jun; 58(11):6762-6. PubMed ID: 20455565 [TBL] [Abstract][Full Text] [Related]
18. Rational design of organophosphorus hydrolase with high catalytic efficiency for detoxifying a V-type nerve agent. Jeong YS; Choi JM; Kyeong HH; Choi JY; Kim EJ; Kim HS Biochem Biophys Res Commun; 2014 Jul; 449(3):263-7. PubMed ID: 24824182 [TBL] [Abstract][Full Text] [Related]
19. Crystallization and preliminary X-ray diffraction analysis of human phosphate-binding protein. Contreras-Martel C; Carpentier P; Morales R; Renault F; Chesne-Seck ML; Rochu D; Masson P; Fontecilla-Camps JC; Chabrière E Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Jan; 62(Pt 1):67-9. PubMed ID: 16511265 [TBL] [Abstract][Full Text] [Related]
20. Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase. Vyas NK; Nickitenko A; Rastogi VK; Shah SS; Quiocho FA Biochemistry; 2010 Jan; 49(3):547-59. PubMed ID: 20000741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]