BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23295677)

  • 1. Removal of dissolved Zn(II) using coal mine drainage sludge: implications for acidic wastewater treatment.
    Cui M; Jang M; Cannon FS; Na S; Khim J; Park JK
    J Environ Manage; 2013 Feb; 116():107-12. PubMed ID: 23295677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential application of sludge produced from coal mine drainage treatment for removing Zn(II) in an aqueous phase.
    Cui M; Jang M; Cho SH; Khim J
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():103-12. PubMed ID: 21063752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuous pilot-scale system using coal-mine drainage sludge to treat acid mine drainage contaminated with high concentrations of Pb, Zn, and other heavy metals.
    Cui M; Jang M; Cho SH; Khim J; Cannon FS
    J Hazard Mater; 2012 May; 215-216():122-8. PubMed ID: 22421342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and thermodynamic studies of the adsorption of heavy metals on to a new adsorbent: coal mine drainage sludge.
    Cui M; Jang M; Cho SH; Khim J
    Environ Technol; 2010 Oct; 31(11):1203-11. PubMed ID: 21046950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waste sludge derived adsorbents for arsenate removal from water.
    Kumar R; Kang CU; Mohan D; Khan MA; Lee JH; Lee SS; Jeon BH
    Chemosphere; 2020 Jan; 239():124832. PubMed ID: 31726524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc adsorption on goethite as affected by glyphosate.
    Wang YJ; Zhou DM; Sun RJ; Jia DA; Zhu HW; Wang SQ
    J Hazard Mater; 2008 Feb; 151(1):179-84. PubMed ID: 17604908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.
    Asta MP; Cama J; Martínez M; Giménez J
    J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface.
    Nachtegaal M; Sparks DL
    J Colloid Interface Sci; 2004 Aug; 276(1):13-23. PubMed ID: 15219425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of crude oil on arsenate adsorption on goethite.
    Wainipee W; Weiss DJ; Sephton MA; Coles BJ; Unsworth C; Court R
    Water Res; 2010 Nov; 44(19):5673-83. PubMed ID: 20599240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico.
    Labastida I; Armienta MA; Lara-Castro RH; Aguayo A; Cruz O; Ceniceros N
    J Hazard Mater; 2013 Nov; 262():1187-95. PubMed ID: 22819958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of the mode of sorption of inositol hexaphosphate to goethite.
    Johnson BB; Quill E; Angove MJ
    J Colloid Interface Sci; 2012 Feb; 367(1):436-42. PubMed ID: 22035760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of coal mine drainage ochre to water treatment reagent: Production, characterisation and application for P and Zn removal.
    Sapsford D; Santonastaso M; Thorn P; Kershaw S
    J Environ Manage; 2015 Sep; 160():7-15. PubMed ID: 26081304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.
    Blodau C
    Sci Total Environ; 2006 Oct; 369(1-3):307-32. PubMed ID: 16806405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel approach to zinc removal from circum-neutral mine waters using pelletised recovered hydrous ferric oxide.
    Mayes WM; Potter HA; Jarvis AP
    J Hazard Mater; 2009 Feb; 162(1):512-20. PubMed ID: 18583040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and biological removal of arsenic from sewage sludge.
    Ito A; Takachi T; Aizawa J; Umita T
    Water Sci Technol; 2001; 44(10):59-64. PubMed ID: 11794682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide.
    Cao Y; Wei X; Cai P; Huang Q; Rong X; Liang W
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):122-7. PubMed ID: 21130614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China.
    Liu Q; Chen B; Haderlein S; Gopalakrishnan G; Zhou Y
    Ecotoxicol Environ Saf; 2018 Jul; 155():50-58. PubMed ID: 29501982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.