These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 23296021)

  • 1. A deterministic annealing algorithm for approximating a solution of the linearly constrained nonconvex quadratic minimization problem.
    Dang C; Liang J; Yang Y
    Neural Netw; 2013 Mar; 39():1-11. PubMed ID: 23296021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.
    Dang C; Xu L
    Neural Comput; 2002 Feb; 14(2):303-24. PubMed ID: 11802914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem.
    Dang C; Xu L
    Neural Netw; 2001 Mar; 14(2):217-30. PubMed ID: 11316235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deterministic annealing algorithm for approximating a solution of the min-bisection problem.
    Dang C; Ma W; Liang J
    Neural Netw; 2009 Jan; 22(1):58-66. PubMed ID: 18995985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deterministic annealing algorithm for the minimum concave cost network flow problem.
    Dang C; Sun Y; Wang Y; Yang Y
    Neural Netw; 2011 Sep; 24(7):699-708. PubMed ID: 21482456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximating a solution of the s-t max-cut problem with a deterministic annealing algorithm.
    Dang C
    Neural Netw; 2000 Sep; 13(7):801-10. PubMed ID: 11152210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deterministic annealing algorithm for approximating a solution of the max-bisection problem.
    Dang C; He L; Hui IK
    Neural Netw; 2002 Apr; 15(3):441-58. PubMed ID: 12125896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An approximation algorithm for graph partitioning via deterministic annealing neural network.
    Wu Z; Karimi HR; Dang C
    Neural Netw; 2019 Sep; 117():191-200. PubMed ID: 31174047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation.
    Bian W; Chen X
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):545-56. PubMed ID: 24807450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deterministic Annealing Neural Network Algorithm for the Minimum Concave Cost Transportation Problem.
    Wu Z; Karimi HR; Dang C
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4354-4366. PubMed ID: 31869806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel neural dynamical approach to convex quadratic program and its efficient applications.
    Xia Y; Sun C
    Neural Netw; 2009 Dec; 22(10):1463-70. PubMed ID: 19410427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the convergence of nonconvex minimization methods for image recovery.
    Xiao J; Ng MK; Yang YF
    IEEE Trans Image Process; 2015 May; 24(5):1587-98. PubMed ID: 25675457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-layer recurrent neural network for constrained nonconvex optimization.
    Li G; Yan Z; Wang J
    Neural Netw; 2015 Jan; 61():10-21. PubMed ID: 25462630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An SMO algorithm for the potential support vector machine.
    Knebel T; Hochreiter S; Obermayer K
    Neural Comput; 2008 Jan; 20(1):271-87. PubMed ID: 18045009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scalable projective scaling algorithm for l(p) loss with convex penalizations.
    Zhou H; Cheng Q
    IEEE Trans Neural Netw Learn Syst; 2015 Feb; 26(2):265-76. PubMed ID: 25608289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient algorithm for nonconvex minimization and its application to PM regularization.
    Li WP; Wang ZM; Deng Y
    IEEE Trans Image Process; 2012 Oct; 21(10):4322-33. PubMed ID: 22829405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient perceptron learning using constrained steepest descent.
    Perantonis SJ; Virvilis V
    Neural Netw; 2000 Apr; 13(3):351-64. PubMed ID: 10937968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nondegenerate piecewise linear systems: a finite Newton algorithm and applications in machine learning.
    Yuan XT; Yan S
    Neural Comput; 2012 Apr; 24(4):1047-84. PubMed ID: 22091666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of the dominant direction of information flow and feedback links in densely interconnected regulatory networks.
    Ispolatov I; Maslov S
    BMC Bioinformatics; 2008 Oct; 9():424. PubMed ID: 18842147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scheduling multiprocessor job with resource and timing constraints using neural networks.
    Huang YM; Chen RM
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(4):490-502. PubMed ID: 18252324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.