BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23296091)

  • 1. Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays.
    Ghadimkhani G; de Tacconi NR; Chanmanee W; Janaky C; Rajeshwar K
    Chem Commun (Camb); 2013 Feb; 49(13):1297-9. PubMed ID: 23296091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres.
    Chang Y; Teo JJ; Zeng HC
    Langmuir; 2005 Feb; 21(3):1074-9. PubMed ID: 15667192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron.
    Cots A; Bonete P; Gómez R
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26348-26356. PubMed ID: 30016591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires.
    Ma M; Djanashvili K; Smith WA
    Phys Chem Chem Phys; 2015 Aug; 17(32):20861-7. PubMed ID: 26214799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.
    Zhou X; Xu D; Zhang Q; Lu J; Zhang K
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7641-6. PubMed ID: 23869818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical flow-based solution-solid growth of the Cu2O nanorod array: potential application to lithium ion batteries.
    Shin JH; Park SH; Hyun SM; Kim JW; Park HM; Song JY
    Phys Chem Chem Phys; 2014 Sep; 16(34):18226-32. PubMed ID: 25055242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of CuAg/Cu
    Nazir R; Kumar A; Ali Saleh Saad M; Ali S
    J Colloid Interface Sci; 2020 Oct; 578():726-737. PubMed ID: 32574908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional CuO/TiO
    Date MK; Yang LH; Yang TY; Wang KY; Su TY; Wu DC; Cheuh YL
    Nanoscale Res Lett; 2020 Feb; 15(1):45. PubMed ID: 32072311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion.
    Gan X; Li X; Gao X; Qiu J; Zhuge F
    Nanotechnology; 2011 Jul; 22(30):305601. PubMed ID: 21697580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications.
    Zou R; Zhang Z; Yu L; Tian Q; Chen Z; Hu J
    Chemistry; 2011 Dec; 17(49):13912-7. PubMed ID: 22038954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining electron-accepting phthalocyanines and nanorod-like CuO electrodes for p-type dye-sensitized solar cells.
    Langmar O; Ganivet CR; Lennert A; Costa RD; de la Torre G; Torres T; Guldi DM
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7688-92. PubMed ID: 26081421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved open-circuit voltage in polymer/oxide-nanoarray hybrid solar cells by formation of homogeneous metal oxide core/shell structures.
    Wu F; Cui Q; Qiu Z; Liu C; Zhang H; Shen W; Wang M
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3246-54. PubMed ID: 23570319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides.
    Kim JY; Rodriguez JA; Hanson JC; Frenkel AI; Lee PL
    J Am Chem Soc; 2003 Sep; 125(35):10684-92. PubMed ID: 12940754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application.
    Zhong JH; Li GR; Wang ZL; Ou YN; Tong YX
    Inorg Chem; 2011 Feb; 50(3):757-63. PubMed ID: 21182331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors.
    Park S; Kim S; Sun GJ; In Lee W; Kim KK; Lee C
    Nanoscale Res Lett; 2014; 9(1):638. PubMed ID: 25489289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of free-standing Cu nanorod arrays on Cu disc by template-assisted electrodeposition.
    Chen X; Duan H; Zhou Z; Liang J; Gnanaraj J
    Nanotechnology; 2008 Sep; 19(36):365306. PubMed ID: 21828871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable morphology and conductivity of electrodeposited Cu₂O thin film: effect of surfactants.
    Yang Y; Han J; Ning X; Cao W; Xu W; Guo L
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22534-43. PubMed ID: 25453498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core-shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition.
    Radi A; Pradhan D; Sohn Y; Leung KT
    ACS Nano; 2010 Mar; 4(3):1553-60. PubMed ID: 20166698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.